Cargando…

Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles

Multifunctional theranostic nanomaterial represents one type of emerging agent with the potential to offer both sensitive diagnosis and effective therapy. Herein, we report a novel drug/siRNA co-delivery nanocarrier, which is based on fluorescent mesoporous core-shell silica nanoparticles coated by...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ruirui, Wei, Shuang, Shao, Leihou, Tong, Lili, Wu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102585/
https://www.ncbi.nlm.nih.gov/pubmed/35566982
http://dx.doi.org/10.3390/polym14091813
Descripción
Sumario:Multifunctional theranostic nanomaterial represents one type of emerging agent with the potential to offer both sensitive diagnosis and effective therapy. Herein, we report a novel drug/siRNA co-delivery nanocarrier, which is based on fluorescent mesoporous core-shell silica nanoparticles coated by cross-linked polyethylenimine. The fluorescent mesoporous core-shell silica nanoparticles can provide numerous pores for drug loading and negative charged surface to assemble cross-linked polyethylenimine via electrostatic interaction. Disulfide cross-linked polyethylenimine can be absorbed on the surface of silica nanoparticles which provide the feasibility to bind with negatively charged siRNA and release drug “on-demand”. In addition, the hybrid nanoparticles can be easily internalized into cells to realize drug/siRNA co-delivery and therapeutic effect imaging. This work would stimulate interest in the use of self-assembled cross-linked polyethylenimine with fluorescent mesoporous core-shell silica nanoparticles to construct multifunctional nanocomposites for tumor therapy.