Cargando…
Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique
Landslides are the most catastrophic geological hazard in hilly areas. The present work intends to identify landslide susceptibility along Karakorum Highway (KKH) in Northern Pakistan, using landslide susceptibility mapping (LSM). To compare and predict the connection between causative factors and l...
Autores principales: | Hussain, Muhammad Afaq, Chen, Zhanlong, Zheng, Ying, Shoaib, Muhammad, Shah, Safeer Ullah, Ali, Nafees, Afzal, Zeeshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102666/ https://www.ncbi.nlm.nih.gov/pubmed/35590807 http://dx.doi.org/10.3390/s22093119 |
Ejemplares similares
-
Sentinel-1A for monitoring land subsidence of coastal city of Pakistan using Persistent Scatterers In-SAR technique
por: Hussain, Muhammad Afaq, et al.
Publicado: (2022) -
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018) -
Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
The importance of input data on landslide susceptibility mapping
por: Gaidzik, Krzysztof, et al.
Publicado: (2021) -
Deep learning-based landslide susceptibility mapping
por: Azarafza, Mohammad, et al.
Publicado: (2021)