Cargando…
Research on the Coordinate Attention Mechanism Fuse in a YOLOv5 Deep Learning Detector for the SAR Ship Detection Task
The real-time performance of ship detection is an important index in the marine remote sensing detection task. Due to the computing resources on the satellite being limited by the solar array size and the radiation-resistant electronic components, information extraction tasks are usually implemented...
Autores principales: | Xie, Fang, Lin, Baojun, Liu, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102707/ https://www.ncbi.nlm.nih.gov/pubmed/35591063 http://dx.doi.org/10.3390/s22093370 |
Ejemplares similares
-
A Lightweight YOLOv5-MNE Algorithm for SAR Ship Detection
por: Pang, Lei, et al.
Publicado: (2022) -
YOLOv5s-CA: A Modified YOLOv5s Network with Coordinate Attention for Underwater Target Detection
por: Wen, Ge, et al.
Publicado: (2023) -
Fusing Self-Attention and CoordConv to Improve the YOLOv5s Algorithm for Infrared Weak Target Detection
por: Fan, Xiangsuo, et al.
Publicado: (2023) -
Improved YOLOv4 recognition algorithm for pitaya based on coordinate attention and combinational convolution
por: Zhang, Fu, et al.
Publicado: (2022) -
Corrigendum: Improved YOLOv4 recognition algorithm for pitaya based on coordinate attention and combinational convolution
por: Zhang, Fu, et al.
Publicado: (2022)