Cargando…

Behavior Study of Commercial Polyurea under Monotonic, Rate Dependent, Cyclic, and Fatigue Tensile Loading for Potential Structural Applications

Understanding material behavior is key to discovering innovative applications in any field. Regardless of the exciting mechanical properties of polyurea, there has been a limited effort in studying the use of polyurea for structural retrofit and strengthening applications. This study aims to underst...

Descripción completa

Detalles Bibliográficos
Autores principales: Acharya, Pawan, Ebrahimian, Hamed, Moustafa, Mohamed A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102770/
https://www.ncbi.nlm.nih.gov/pubmed/35567047
http://dx.doi.org/10.3390/polym14091878
Descripción
Sumario:Understanding material behavior is key to discovering innovative applications in any field. Regardless of the exciting mechanical properties of polyurea, there has been a limited effort in studying the use of polyurea for structural retrofit and strengthening applications. This study aims to understand the behavior of polyurea under different tensile loading conditions to provide critical information towards enabling the future use of polyurea in structural applications. Several standard coupons are tested under various tensile loading conditions to understand the mechanical behavior of eight different commercial polyureas. The study provides the full stress–strain characteristic curves that can be used for constitutive modeling purposes. The results show that polyurea has a wide range of properties from low strength flexible nature to high strength rigid nature. All tested polyureas displayed some level of rate dependency, i.e., ultimate strength is a function of loading rates. The high-strength polyureas tested only show slight rate dependency and good strength retention under cyclic and fatigue tensile loading, suggesting that polyureas have promising mechanical properties for potential structural applications.