Cargando…

Joining Properties of SPFC440/AA5052 Multi-Material Self-Piercing Riveting Joints

With the development of new energy vehicles, the joining of lightweight alloys has received more attention. Self-piercing riveting experiments of aluminum alloy and high-strength steel sheets were performed to analyze the effects of rivet height and laying order of metal sheets on the joining qualit...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Ze-Jie, Huang, Zhi-Chao, Jiang, Yu-Qiang, Tang, Nan-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102905/
https://www.ncbi.nlm.nih.gov/pubmed/35591299
http://dx.doi.org/10.3390/ma15092962
Descripción
Sumario:With the development of new energy vehicles, the joining of lightweight alloys has received more attention. Self-piercing riveting experiments of aluminum alloy and high-strength steel sheets were performed to analyze the effects of rivet height and laying order of metal sheets on the joining quality in the work. The forming surface, cross-sectional morphology, static tensile property, fatigue property, failure mode, and mechanism were analyzed. The results show that AA5052 alloy and SPFC440 steel can be joined effectively by self-piercing riveting, and there is good contact between rivet head and sheet surfaces. When the rivet is 2.5–3.5 mm higher than the total thickness of two layers sheets, the rivet leg flares symmetrically without cracks or buckling, and the lower sheet completely encapsulates the joint button. The joints have better static tensile properties when the rivet is about 3 mm higher than the thickness of two sheets. The higher static strength is obtained when the aluminum alloy is placed at the lower position. The rivet legs fall off from the lower sheets for all the samples in the tensile tests, which is independent of the rivet height and laying order of metal sheets. The fatigue strength of the sample with the rivet height of 7 mm is the greatest, and the fatigue cracks always occur on the aluminum sheet under all experimental conditions. The findings in this work can help the practical application of self-piercing riveting for aluminum/steel sheets.