Cargando…

Bacteria and Soil Enzymes Supporting the Valorization of Forested Soils

To decompose forest biomass, microorganisms use specific enzymes from the class of oxidoreductases and hydrolases, which are produced by bacteria and soil fungi. In post-agricultural forest soils, bacteria adapt more easily to changing ecological conditions than fungi. The unique features of bacteri...

Descripción completa

Detalles Bibliográficos
Autores principales: Borowik, Agata, Wyszkowska, Jadwiga, Kucharski, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102912/
https://www.ncbi.nlm.nih.gov/pubmed/35591626
http://dx.doi.org/10.3390/ma15093287
Descripción
Sumario:To decompose forest biomass, microorganisms use specific enzymes from the class of oxidoreductases and hydrolases, which are produced by bacteria and soil fungi. In post-agricultural forest soils, bacteria adapt more easily to changing ecological conditions than fungi. The unique features of bacteria, i.e., tolerance and the ability to degrade a wide range of chemical compounds, prompted us to conduct research that contributes to the improvement of the broadly understood circular management of biomass production and economic efficiency. This study aimed to analyze changes in the microbiological activity and the activities of dehydrogenases, catalase, β-glucosidase, urease, arylsulfatase, acid phosphatase, and alkaline phosphatase in the soil sampled from under Picea abies (Pa), Pinus sylvestris (Ps), Larix decidua (Ld), Quercus robur (Qr), and Betula pendula (Bp), after 19 years. The control object was unforested soil. The studies allowed one to demonstrate the relationship between the activity of soil enzymes and the assemblages of culturable microorganisms and bacteria determined by the metagenomic method and tree species. Thus, it is possible to design the selection of tree species catalyzing enzymatic processes in soil. The strongest growth promoter of microorganisms turned out to be Quercus robur L., followed by Picea abies L., whereas the weakest promoters appeared to be Pinus sylvestris L. and Larix decidua M.