Cargando…
Spatial Alignment for Unsupervised Domain Adaptive Single-Stage Object Detection
Domain adaptation methods are proposed to improve the performance of object detection in new domains without additional annotation costs. Recently, domain adaptation methods based on adversarial learning to align source and target domain image distributions are effective. However, for object detecti...
Autores principales: | Liang, Hong, Tong, Yanqi, Zhang, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102984/ https://www.ncbi.nlm.nih.gov/pubmed/35590943 http://dx.doi.org/10.3390/s22093253 |
Ejemplares similares
-
Cascading Alignment for Unsupervised Domain-Adaptive DETR with Improved DeNoising Anchor Boxes
por: Geng, Huantong, et al.
Publicado: (2022) -
Unsupervised Domain Adaptation for Image Classification and Object Detection Using Guided Transfer Learning Approach and JS Divergence
por: Goel, Parth, et al.
Publicado: (2023) -
Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling
por: Zhao, Liang, et al.
Publicado: (2014) -
GMAIR: Unsupervised Object Detection Based on Spatial Attention and Gaussian Mixture Model
por: Zhu, Weijin, et al.
Publicado: (2022) -
Unsupervised Domain Adaptive Corner Detection in Vehicle Plate Images
por: Jun, Kyungkoo
Publicado: (2022)