Cargando…
The century-old picture of a nerve spike is wrong: filaments fire, before membrane
In 1907, Lapicque proposed that an electric field passes through the neuronal membrane and transmits a signal. Subsequently, a “snake curve” or spike was used to depict the means by which a linear flat current undergoes a sudden Gaussian or Laplacian peak. This concept has been the accepted scenario...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103266/ https://www.ncbi.nlm.nih.gov/pubmed/35574158 http://dx.doi.org/10.1080/19420889.2022.2071101 |
Sumario: | In 1907, Lapicque proposed that an electric field passes through the neuronal membrane and transmits a signal. Subsequently, a “snake curve” or spike was used to depict the means by which a linear flat current undergoes a sudden Gaussian or Laplacian peak. This concept has been the accepted scenario for more than 115 years even appearing in textbooks on the subject. It was not noted that the membrane spike should have a cylindrical shape. A nerve spike having a dot shape on membrane surface cannot propagate through a cylindrical surface since it would dissipate instantaneously. A nerve spike should have the appearance of a ring, encompassing the diameter of a cylindrical axon or dendron. However, this subtle change has remarkable implications. Maintaining a circular form of an electric field is not easy, especially at the surface of an organic object. Here, we suggest that neuroscience could redefine itself if we accept that a nerve spike is not a localized 3D Gaussian or Laplacian wave packet, rather it is a 3D ring encompassing the diameter of a neural branch. |
---|