Cargando…
A Deep Learning Approach for the Assessment of Signal Quality of Non-Invasive Foetal Electrocardiography
Non-invasive foetal electrocardiography (NI-FECG) has become an important prenatal monitoring method in the hospital. However, due to its susceptibility to non-stationary noise sources and lack of robust extraction methods, the capture of high-quality NI-FECG remains a challenge. Recording waveforms...
Autores principales: | Mertes, Gert, Long, Yuan, Liu, Zhangdaihong, Li, Yuhui, Yang, Yang, Clifton, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103336/ https://www.ncbi.nlm.nih.gov/pubmed/35591004 http://dx.doi.org/10.3390/s22093303 |
Ejemplares similares
-
Feasibility of non-invasive Foetal electrocardiography in a twin pregnancy
por: Noben, Lore, et al.
Publicado: (2020) -
Annotated real and synthetic datasets for non-invasive foetal electrocardiography post-processing benchmarking
por: Baldazzi, Giulia, et al.
Publicado: (2020) -
Deep-learning model for screening sepsis using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2021) -
Signal Quality Analysis of Single-Arm Electrocardiography
por: Wang, Jia-Jung, et al.
Publicado: (2023) -
Automatic signal quality assessment of raw trans-abdominal biopotential recordings for non-invasive fetal electrocardiography
por: Baldazzi, Giulia, et al.
Publicado: (2023)