Cargando…
A Machine Learning Framework to Predict the Tensile Stress of Natural Rubber: Based on Molecular Dynamics Simulation Data
Natural rubber (NR), with its excellent mechanical properties, has been attracting considerable scientific and technological attention. Through molecular dynamics (MD) simulations, the effects of key structural factors on tensile stress at the molecular level can be examined. However, this high-prec...
Autores principales: | Huang, Yongdi, Chen, Qionghai, Zhang, Zhiyu, Gao, Ke, Hu, Anwen, Dong, Yining, Liu, Jun, Cui, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103449/ https://www.ncbi.nlm.nih.gov/pubmed/35567066 http://dx.doi.org/10.3390/polym14091897 |
Ejemplares similares
-
Analysis on Microstructure–Property Linkages of Filled Rubber Using Machine Learning and Molecular Dynamics Simulations
por: Kojima, Takashi, et al.
Publicado: (2021) -
Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations
por: Kitjanon, Jiramate, et al.
Publicado: (2021) -
Molecular Dynamics Simulation of the Thermomechanical and Tribological Properties of Graphene-Reinforced Natural Rubber Nanocomposites
por: Wang, Zepeng, et al.
Publicado: (2022) -
Impact of uniaxial tensile fatigue on the evolution of microscopic and mesoscopic structure of carbon black filled natural rubber
por: Sun, Chong, et al.
Publicado: (2019) -
Synthesis of computer simulation and machine learning for achieving the best material properties of filled rubber
por: Kojima, Takashi, et al.
Publicado: (2020)