Cargando…

Novel Antibacterial Copolymers Based on Quaternary Ammonium Urethane-Dimethacrylate Analogues and Triethylene Glycol Dimethacrylate

The growing scale of secondary caries and occurrence of antibiotic-resistant bacterial strains require the development of antibacterial dental composites. It can be achieved by the chemical introduction of quaternary ammonium dimethacrylates into dental composites. In this study, physicochemical and...

Descripción completa

Detalles Bibliográficos
Autores principales: Chrószcz, Marta W., Barszczewska-Rybarek, Izabela M., Kazek-Kęsik, Alicja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103508/
https://www.ncbi.nlm.nih.gov/pubmed/35563344
http://dx.doi.org/10.3390/ijms23094954
Descripción
Sumario:The growing scale of secondary caries and occurrence of antibiotic-resistant bacterial strains require the development of antibacterial dental composites. It can be achieved by the chemical introduction of quaternary ammonium dimethacrylates into dental composites. In this study, physicochemical and antibacterial properties of six novel copolymers consisting of 60 wt. % quaternary ammonium urethane-dimethacrylate analogues (QAUDMA) and 40 wt. % triethylene glycol dimethacrylate (TEGDMA) were investigated. Uncured compositions had suitable refractive index (RI), density (d(m)), and glass transition temperature (Tg(m)). Copolymers had low polymerization shrinkage (S), high degree of conversion (DC) and high glass transition temperature (Tg(p)). They also showed high antibacterial effectiveness against S. aureus and E. coli bacterial strains. It was manifested by the reduction in cell proliferation, decrease in the number of bacteria adhered on their surfaces, and presence of growth inhibition zones. It can be concluded that the copolymerization of bioactive QAUDMAs with TEGDMA provided copolymers with high antibacterial activity and rewarding physicochemical properties.