Cargando…
Fine-Tuning BERT Models to Classify Misinformation on Garlic and COVID-19 on Twitter
Garlic-related misinformation is prevalent whenever a virus outbreak occurs. With the outbreak of COVID-19, garlic-related misinformation is spreading through social media, including Twitter. Bidirectional Encoder Representations from Transformers (BERT) can be used to classify misinformation from a...
Autores principales: | Kim, Myeong Gyu, Kim, Minjung, Kim, Jae Hyun, Kim, Kyungim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103576/ https://www.ncbi.nlm.nih.gov/pubmed/35564518 http://dx.doi.org/10.3390/ijerph19095126 |
Ejemplares similares
-
Fine-tuning of BERT Model to Accurately Predict Drug–Target Interactions
por: Kang, Hyeunseok, et al.
Publicado: (2022) -
COVID-Twitter-BERT: A natural language processing model to analyse COVID-19 content on Twitter
por: Müller, Martin, et al.
Publicado: (2023) -
Investigation of improving the pre-training and fine-tuning of BERT model for biomedical relation extraction
por: Su, Peng, et al.
Publicado: (2022) -
Effectiveness of Fine-tuned BERT Model in Classification of Helpful and Unhelpful Online Customer Reviews
por: Bilal, Muhammad, et al.
Publicado: (2022) -
A Fine-Tuned BERT-Based Transfer Learning Approach for Text Classification
por: Qasim, Rukhma, et al.
Publicado: (2022)