Cargando…
Guided regularized random forest feature selection for smartphone based human activity recognition
Human activity recognition (HAR) is an eminent area of research due to its extensive scope of applications in remote health monitoring, sports, smart home, and many more. Smartphone-based HAR systems use high-dimensional sensor data to infer human physical activities. Researchers continuously endeav...
Autores principales: | Thakur, Dipanwita, Biswas, Suparna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103613/ https://www.ncbi.nlm.nih.gov/pubmed/35601253 http://dx.doi.org/10.1007/s12652-022-03862-5 |
Ejemplares similares
-
Feature fusion using deep learning for smartphone based human activity recognition
por: Thakur, Dipanwita, et al.
Publicado: (2021) -
Feature Selection for Wearable Smartphone-Based Human Activity Recognition with Able bodied, Elderly, and Stroke Patients
por: Capela, Nicole A., et al.
Publicado: (2015) -
Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model
por: Ahmed, Nadeem, et al.
Publicado: (2020) -
Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model
por: Tahir, Sheikh Badar ud din, et al.
Publicado: (2022) -
Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch
por: Tan, Tan-Hsu, et al.
Publicado: (2023)