Cargando…
Dynamic Learning Framework for Smooth-Aided Machine-Learning-Based Backbone Traffic Forecasts
Recently, there has been an increasing need for new applications and services such as big data, blockchains, vehicle-to-everything (V2X), the Internet of things, 5G, and beyond. Therefore, to maintain quality of service (QoS), accurate network resource planning and forecasting are essential steps fo...
Autores principales: | Hassan, Mohamed Khalafalla, Syed Ariffin, Sharifah Hafizah, Ghazali, N. Effiyana, Hamad, Mutaz, Hamdan, Mosab, Hamdi, Monia, Hamam, Habib, Khan, Suleman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103727/ https://www.ncbi.nlm.nih.gov/pubmed/35591282 http://dx.doi.org/10.3390/s22093592 |
Ejemplares similares
-
Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents
por: Barba, Lida, et al.
Publicado: (2014) -
Machine Learning Model Application and Comparison in Actuated Traffic Signal Forecasting
por: Xie, Feng, et al.
Publicado: (2023) -
Evaluating the effectiveness of machine learning techniques in forecasting the severity of traffic accidents
por: Obasi, Izuchukwu Chukwuma, et al.
Publicado: (2023) -
A Deep Learning Framework About Traffic Flow Forecasting for Urban Traffic Emission Monitoring System
por: Yao, Baozhen, et al.
Publicado: (2022) -
Road Traffic Forecast Based on Meteorological Information through Deep Learning Methods
por: Braz, Fernando José, et al.
Publicado: (2022)