Cargando…
Machine Learning for Detection of Muscular Activity from Surface EMG Signals
Background: Muscular-activity timing is useful information that is extractable from surface EMG signals (sEMG). However, a reference method is not available yet. The aim of this study is to investigate the reliability of a novel machine-learning-based approach (DEMANN) in detecting the onset/offset...
Autores principales: | Di Nardo, Francesco, Nocera, Antonio, Cucchiarelli, Alessandro, Fioretti, Sandro, Morbidoni, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103856/ https://www.ncbi.nlm.nih.gov/pubmed/35591084 http://dx.doi.org/10.3390/s22093393 |
Ejemplares similares
-
Intra-subject approach for gait-event prediction by neural network interpretation of EMG signals
por: Di Nardo, Francesco, et al.
Publicado: (2020) -
EMG-Based Characterization of Walking Asymmetry in Children with Mild Hemiplegic Cerebral Palsy
por: Di Nardo, Francesco, et al.
Publicado: (2019) -
Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study
por: Lobo-Prat, Joan, et al.
Publicado: (2017) -
Muscle Co-Contraction Detection in the Time–Frequency Domain
por: Di Nardo, Francesco, et al.
Publicado: (2022) -
Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot
por: Pérez-Reynoso, Francisco, et al.
Publicado: (2022)