Cargando…
Resource Scheduling and Energy Consumption Optimization Based on Lyapunov Optimization in Fog Computing
Delay-sensitive tasks account for an increasing proportion of all tasks on the Internet of Things (IoT). How to solve such problems has become a hot research topic. Delay-sensitive tasks scenarios include intelligent vehicles, unmanned aerial vehicles, industrial IoT, intelligent transportation, etc...
Autores principales: | Huang, Chenbin, Wang, Hui, Zeng, Lingguo, Li, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104024/ https://www.ncbi.nlm.nih.gov/pubmed/35591216 http://dx.doi.org/10.3390/s22093527 |
Ejemplares similares
-
Methods of Resource Scheduling Based on Optimized Fuzzy Clustering in Fog Computing
por: Li, Guangshun, et al.
Publicado: (2019) -
IoT Workflow Scheduling Using Intelligent Arithmetic Optimization Algorithm in Fog Computing
por: Abd Elaziz, Mohamed, et al.
Publicado: (2021) -
Toward IoT fog computing-enabled system energy consumption modeling and optimization by adaptive TCP/IP protocol
por: Masri, Aladdin, et al.
Publicado: (2021) -
Fog Computing Model to Orchestrate the Consumption and Production of Energy in Microgrids
por: Barros, Eric Bernardes C., et al.
Publicado: (2019) -
Reinforcement learning for optimal feedback control: a Lyapunov-based approach
por: Kamalapurkar, Rushikesh, et al.
Publicado: (2018)