Cargando…
Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver
Obesity often concurs with nonalcoholic fatty liver disease (NAFLD), both of which are detrimental to human health. Thus far, exercise appears to be an effective treatment approach. However, its effects cannot last long and, moreover, it is difficult to achieve for many obese people. Thus, it is nec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104027/ https://www.ncbi.nlm.nih.gov/pubmed/35563600 http://dx.doi.org/10.3390/ijms23095209 |
_version_ | 1784707694366556160 |
---|---|
author | Luo, Yunfei Chen, Qiongfeng Zou, Junrong Fan, Jingjing Li, Yuanjun Luo, Zhijun |
author_facet | Luo, Yunfei Chen, Qiongfeng Zou, Junrong Fan, Jingjing Li, Yuanjun Luo, Zhijun |
author_sort | Luo, Yunfei |
collection | PubMed |
description | Obesity often concurs with nonalcoholic fatty liver disease (NAFLD), both of which are detrimental to human health. Thus far, exercise appears to be an effective treatment approach. However, its effects cannot last long and, moreover, it is difficult to achieve for many obese people. Thus, it is necessary to look into alternative remedies. The present study explored a noninvasive, easy, tolerable physical alternative. In our experiment, C57BL/6 mice were fed with a high-fat diet (HFD) to induce overweight/obesity and were exposed to 10% oxygen for one hour every day. We found that hypoxia exerted protective effects. First, it offset HFD-induced bodyweight gain and insulin resistance. Secondly, hypoxia reversed the HFD-induced enlargement of white and brown adipocytes and fatty liver, and protected liver function. Thirdly, HFD downregulated the expression of genes required for lipolysis and thermogenesis, such as UCP1, ADR3(beta3-adrenergic receptor), CPT1A, ATGL, PPARα, and PGC1α, M2 macrophage markers arginase and CD206 in the liver, and UCP1 and PPARγ in brown fat, while these molecules were upregulated by hypoxia. Furthermore, hypoxia induced the activation of AMPK, an energy sensing enzyme. Fourthly, our results showed that hypoxia increased serum levels of epinephrine. Indeed, the effects of hypoxia on bodyweight, fatty liver, and associated changes in gene expression ever tested were reproduced by injection of epinephrine and prevented by propranolol at varying degrees. Altogether, our data suggest that hypoxia triggers stress responses where epinephrine plays important roles. Therefore, our study sheds light on the hope to use hypoxia to treat the daunting disorders, obesity and NAFLD. |
format | Online Article Text |
id | pubmed-9104027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91040272022-05-14 Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver Luo, Yunfei Chen, Qiongfeng Zou, Junrong Fan, Jingjing Li, Yuanjun Luo, Zhijun Int J Mol Sci Article Obesity often concurs with nonalcoholic fatty liver disease (NAFLD), both of which are detrimental to human health. Thus far, exercise appears to be an effective treatment approach. However, its effects cannot last long and, moreover, it is difficult to achieve for many obese people. Thus, it is necessary to look into alternative remedies. The present study explored a noninvasive, easy, tolerable physical alternative. In our experiment, C57BL/6 mice were fed with a high-fat diet (HFD) to induce overweight/obesity and were exposed to 10% oxygen for one hour every day. We found that hypoxia exerted protective effects. First, it offset HFD-induced bodyweight gain and insulin resistance. Secondly, hypoxia reversed the HFD-induced enlargement of white and brown adipocytes and fatty liver, and protected liver function. Thirdly, HFD downregulated the expression of genes required for lipolysis and thermogenesis, such as UCP1, ADR3(beta3-adrenergic receptor), CPT1A, ATGL, PPARα, and PGC1α, M2 macrophage markers arginase and CD206 in the liver, and UCP1 and PPARγ in brown fat, while these molecules were upregulated by hypoxia. Furthermore, hypoxia induced the activation of AMPK, an energy sensing enzyme. Fourthly, our results showed that hypoxia increased serum levels of epinephrine. Indeed, the effects of hypoxia on bodyweight, fatty liver, and associated changes in gene expression ever tested were reproduced by injection of epinephrine and prevented by propranolol at varying degrees. Altogether, our data suggest that hypoxia triggers stress responses where epinephrine plays important roles. Therefore, our study sheds light on the hope to use hypoxia to treat the daunting disorders, obesity and NAFLD. MDPI 2022-05-06 /pmc/articles/PMC9104027/ /pubmed/35563600 http://dx.doi.org/10.3390/ijms23095209 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Luo, Yunfei Chen, Qiongfeng Zou, Junrong Fan, Jingjing Li, Yuanjun Luo, Zhijun Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver |
title | Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver |
title_full | Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver |
title_fullStr | Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver |
title_full_unstemmed | Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver |
title_short | Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver |
title_sort | chronic intermittent hypoxia exposure alternative to exercise alleviates high-fat-diet-induced obesity and fatty liver |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104027/ https://www.ncbi.nlm.nih.gov/pubmed/35563600 http://dx.doi.org/10.3390/ijms23095209 |
work_keys_str_mv | AT luoyunfei chronicintermittenthypoxiaexposurealternativetoexercisealleviateshighfatdietinducedobesityandfattyliver AT chenqiongfeng chronicintermittenthypoxiaexposurealternativetoexercisealleviateshighfatdietinducedobesityandfattyliver AT zoujunrong chronicintermittenthypoxiaexposurealternativetoexercisealleviateshighfatdietinducedobesityandfattyliver AT fanjingjing chronicintermittenthypoxiaexposurealternativetoexercisealleviateshighfatdietinducedobesityandfattyliver AT liyuanjun chronicintermittenthypoxiaexposurealternativetoexercisealleviateshighfatdietinducedobesityandfattyliver AT luozhijun chronicintermittenthypoxiaexposurealternativetoexercisealleviateshighfatdietinducedobesityandfattyliver |