Cargando…

Purification and Identification of Novel Myeloperoxidase Inhibitory Antioxidant Peptides from Tuna (Thunnas albacares) Protein Hydrolysates

Antioxidative peptides that inhibit myeloperoxidase (MPO) enzyme activity can effectively defend against oxidative stress damage. The antioxidant peptides from tuna protein were produced using alcalase hydrolysis and purified by ultrafiltration and Sephadex G-15, and the fractions with the highest f...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Bingna, Wan, Peng, Chen, Hua, Huang, Jingtong, Ye, Ziqing, Chen, Deke, Pan, Jianyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104108/
https://www.ncbi.nlm.nih.gov/pubmed/35566036
http://dx.doi.org/10.3390/molecules27092681
Descripción
Sumario:Antioxidative peptides that inhibit myeloperoxidase (MPO) enzyme activity can effectively defend against oxidative stress damage. The antioxidant peptides from tuna protein were produced using alcalase hydrolysis and purified by ultrafiltration and Sephadex G-15, and the fractions with the highest free radicals scavenging ability and oxygen radical absorbance capacity (ORAC) values were sequenced using HPLC–MS/MS. Fifty-five peptide sequences were identified, 53 of which were successfully docked into MPO. The representative peptide ACGSDGK had better antioxidant activity and inhibition of MPO chlorination and peroxidation than the reference peptide hLF1-11. The docking model further showed intense molecular interactions between ACGSDGK and MPO, including hydrogen bonds, charge, and salt bridge interactions, which occluded the active site and blocked the catalytic activity of MPO. These results suggested that the antioxidant peptide ACGSDGK has the potential to inhibit oxidative stress and alleviate inflammation in vivo because of its inhibitory effect on the MPO enzyme.