Cargando…

Live‐cell imaging elaborating epidermal invasion and vascular proliferation/colonization strategy of Verticillium dahliae in host plants

The soilborne ascomycete fungus Verticillium dahliae causes destructive vascular wilt disease in hundreds of dicotyledonous plant species. However, our understanding of the early invasion from the epidermis to the vasculature and the prompt proliferation and colonization in the xylem tissues remains...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Juan, Kong, Zhaosheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104255/
https://www.ncbi.nlm.nih.gov/pubmed/35322912
http://dx.doi.org/10.1111/mpp.13212
Descripción
Sumario:The soilborne ascomycete fungus Verticillium dahliae causes destructive vascular wilt disease in hundreds of dicotyledonous plant species. However, our understanding of the early invasion from the epidermis to the vasculature and the prompt proliferation and colonization in the xylem tissues remains poor. To elaborate the detailed infection strategy of V. dahliae in host plants, we traced the whole infection process of V. dahliae by live‐cell imaging combined with high‐resolution scanning electron microscopy. The 4D image series demonstrated that the apex of invading hyphae becomes tapered and directly invades the intercellular space of root epidermal cells at the initial infection. Following successful epidermal invasion, the invading hyphae extend in the intercellular space of the root cortex toward the vascular tissues. Importantly, the high‐resolution microscopic and live‐cell images demonstrated (a) that conidia are formed via budding at the apex of the hyphae in the xylem vessels to promote systemic propagation vertically, and (b) that the hyphae freely cross adjacent xylem vessels through the intertracheary pits to achieve horizontal colonization. Our findings provide a solid cellular basis for future studies on both intracellular invasion and vascular colonization/proliferation during V. dahliae infection and pathogenesis in host plants.