Cargando…
Multiscale and Hierarchical Feature-Aggregation Network for Segmenting Medical Images
We propose an encoder–decoder architecture using wide and deep convolutional layers combined with different aggregation modules for the segmentation of medical images. Initially, we obtain a rich representation of features that span from low to high levels and from small to large scales by stacking...
Autores principales: | Yamanakkanavar, Nagaraj, Choi, Jae Young, Lee, Bumshik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104396/ https://www.ncbi.nlm.nih.gov/pubmed/35591129 http://dx.doi.org/10.3390/s22093440 |
Ejemplares similares
-
Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
por: Lee, Bumshik, et al.
Publicado: (2020) -
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer’s Disease: A Survey
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2020) -
Correction: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
por: Lee, Bumshik, et al.
Publicado: (2022) -
Multiresolution Aggregation Transformer UNet Based on Multiscale Input and Coordinate Attention for Medical Image Segmentation
por: Chen, Shaolong, et al.
Publicado: (2022)