Cargando…
An Invasive Disease Event-Free Survival Analysis to Investigate Ki67 Role with Respect to Breast Cancer Patients’ Age: A Retrospective Cohort Study
SIMPLE SUMMARY: With the aim of enabling clinicians to design personalized therapeutic options according to patients’ age, in this study we investigated the relation between different threshold values of ki67, involved for defining breast cancer molecular subtypes along with other prognostic biomark...
Autores principales: | Massafra, Raffaella, Bove, Samantha, La Forgia, Daniele, Comes, Maria Colomba, Didonna, Vittorio, Gatta, Gianluca, Giotta, Francesco, Latorre, Agnese, Nardone, Annalisa, Palmiotti, Gennaro, Quaresmini, Davide, Rinaldi, Lucia, Tamborra, Pasquale, Zito, Alfredo, Rizzo, Alessandro, Fanizzi, Annarita, Lorusso, Vito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104454/ https://www.ncbi.nlm.nih.gov/pubmed/35565344 http://dx.doi.org/10.3390/cancers14092215 |
Ejemplares similares
-
A machine learning ensemble approach for 5- and 10-year breast cancer invasive disease event classification
por: Massafra, Raffaella, et al.
Publicado: (2022) -
Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy
por: Massafra, Raffaella, et al.
Publicado: (2022) -
A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
por: Bove, Samantha, et al.
Publicado: (2022) -
Early Prediction of Breast Cancer Recurrence for Patients Treated with Neoadjuvant Chemotherapy: A Transfer Learning Approach on DCE-MRIs
por: Comes, Maria Colomba, et al.
Publicado: (2021) -
Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive HER2 negative breast cancer
por: Fanizzi, Annarita, et al.
Publicado: (2023)