Cargando…

A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer

Piezoelectric transducers are used as a sensing device to study the fluids’ motion. Moreover, they are used as a harvester of energy of Flow-Induced Vibration (FIV). The current FIV harvesters in the literature rely on piezoelectric cantilevers coupled with a bluff body that creates flow instabiliti...

Descripción completa

Detalles Bibliográficos
Autores principales: Salem, Shehab, Fraňa, Karel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104468/
https://www.ncbi.nlm.nih.gov/pubmed/35591154
http://dx.doi.org/10.3390/s22093463
Descripción
Sumario:Piezoelectric transducers are used as a sensing device to study the fluids’ motion. Moreover, they are used as a harvester of energy of Flow-Induced Vibration (FIV). The current FIV harvesters in the literature rely on piezoelectric cantilevers coupled with a bluff body that creates flow instabilities. This paper studies the use of piezoelectric cylinders as a novel transducer in the field of fluid mechanics, where the transducer makes use of its bluff geometry to create instability. The study was based on wind tunnel measurements performed on four piezoelectric cylinders of different sizes over a speed range of 1–7 m/s. The paper looks at the variation of the generated voltage across the Reynolds number. It also compares the spectra of the generated open-circuit voltage to the turbulence spectra features known from the literature.