Cargando…
Fabrication of ZnO@Plant Polyphenols/Cellulose as Active Food Packaging and Its Enhanced Antibacterial Activity
To investigate the efficient use of bioresources and bioproducts, plant polyphenol (PPL) was extracted from larch bark and further applied to prepare ZnO@PPL/Cel with cellulose to examine its potential as an active package material. The structure and morphology were fully characterized by XRD, SEM,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104473/ https://www.ncbi.nlm.nih.gov/pubmed/35563609 http://dx.doi.org/10.3390/ijms23095218 |
Sumario: | To investigate the efficient use of bioresources and bioproducts, plant polyphenol (PPL) was extracted from larch bark and further applied to prepare ZnO@PPL/Cel with cellulose to examine its potential as an active package material. The structure and morphology were fully characterized by XRD, SEM, FTIR, XPS and Raman spectra. It was found that PPL is able to cover ZnO and form a coating layer. In addition, PPL cross-links with cellulose and makes ZnO distribute evenly on the cellulose fibers. Coating with PPL creates a pinecone-like morphology in ZnO, which is constructed by subunits of 50 nm ZnO slices. The interactions among ZnO, PPL and cellulose have been attributed to hydrogen bonding, which plays an important role in guiding the formation of composites. The antibacterial properties against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were tested by the inhibition zone method. Our composite ZnO@PPL/Cel has superior antibacterial activity compared to ZnO/Cel. The antibacterial mechanism has also been elaborated on. The low cost, simple preparation method and good performance of ZnO@PPL/Cel suggest the potential for it to be applied as active food packaging. |
---|