Cargando…

The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume

Nowadays, society is experiencing an increase in the number of adults aged 65 and over, and it is projected that the older adult population will triple in the coming decades. As older adults are prone to becoming dehydrated, which can significantly impact healthcare costs and staff, it is necessary...

Descripción completa

Detalles Bibliográficos
Autores principales: Malvuccio, Carlotta, Kamavuako, Ernest N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104476/
https://www.ncbi.nlm.nih.gov/pubmed/35591068
http://dx.doi.org/10.3390/s22093380
_version_ 1784707803610349568
author Malvuccio, Carlotta
Kamavuako, Ernest N.
author_facet Malvuccio, Carlotta
Kamavuako, Ernest N.
author_sort Malvuccio, Carlotta
collection PubMed
description Nowadays, society is experiencing an increase in the number of adults aged 65 and over, and it is projected that the older adult population will triple in the coming decades. As older adults are prone to becoming dehydrated, which can significantly impact healthcare costs and staff, it is necessary to advance healthcare technologies to cater to such needs. However, there has not been an extensive research effort to implement a device that can autonomously track fluid intake. In particular, the ability of surface electromyographic sensors (sEMG) to monitor fluid intake has not been investigated in depth. Our previous study demonstrated a reasonable classification and estimation ability of sEMG using four features. This study aimed to examine if classification and estimation could be potentiated by combining an optimal subset of features from a library of forty-six time and frequency-domain features extracted from the data recorded using eleven subjects. Results demonstrated a classification accuracy of 95.94 ± 2.76% and an f-score of 94.93 ± 3.51% in differentiating between liquid swallows from non-liquid swallowing events using five features only, and a volume estimation RMSE of 2.80 ± 1.22 mL per sip and an average estimation error of 15.43 ± 8.64% using two features only. These results are encouraging and prove that sEMG could be a potential candidate for monitoring fluid intake.
format Online
Article
Text
id pubmed-9104476
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91044762022-05-14 The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume Malvuccio, Carlotta Kamavuako, Ernest N. Sensors (Basel) Article Nowadays, society is experiencing an increase in the number of adults aged 65 and over, and it is projected that the older adult population will triple in the coming decades. As older adults are prone to becoming dehydrated, which can significantly impact healthcare costs and staff, it is necessary to advance healthcare technologies to cater to such needs. However, there has not been an extensive research effort to implement a device that can autonomously track fluid intake. In particular, the ability of surface electromyographic sensors (sEMG) to monitor fluid intake has not been investigated in depth. Our previous study demonstrated a reasonable classification and estimation ability of sEMG using four features. This study aimed to examine if classification and estimation could be potentiated by combining an optimal subset of features from a library of forty-six time and frequency-domain features extracted from the data recorded using eleven subjects. Results demonstrated a classification accuracy of 95.94 ± 2.76% and an f-score of 94.93 ± 3.51% in differentiating between liquid swallows from non-liquid swallowing events using five features only, and a volume estimation RMSE of 2.80 ± 1.22 mL per sip and an average estimation error of 15.43 ± 8.64% using two features only. These results are encouraging and prove that sEMG could be a potential candidate for monitoring fluid intake. MDPI 2022-04-28 /pmc/articles/PMC9104476/ /pubmed/35591068 http://dx.doi.org/10.3390/s22093380 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Malvuccio, Carlotta
Kamavuako, Ernest N.
The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume
title The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume
title_full The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume
title_fullStr The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume
title_full_unstemmed The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume
title_short The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume
title_sort effect of emg features on the classification of swallowing events and the estimation of fluid intake volume
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104476/
https://www.ncbi.nlm.nih.gov/pubmed/35591068
http://dx.doi.org/10.3390/s22093380
work_keys_str_mv AT malvucciocarlotta theeffectofemgfeaturesontheclassificationofswallowingeventsandtheestimationoffluidintakevolume
AT kamavuakoernestn theeffectofemgfeaturesontheclassificationofswallowingeventsandtheestimationoffluidintakevolume
AT malvucciocarlotta effectofemgfeaturesontheclassificationofswallowingeventsandtheestimationoffluidintakevolume
AT kamavuakoernestn effectofemgfeaturesontheclassificationofswallowingeventsandtheestimationoffluidintakevolume