Cargando…

Handheld PET Probe for Pediatric Cancer Surgery

SIMPLE SUMMARY: Positron emission tomography (PET)/computed tomography (CT) scans are widely used as a form of full body imaging and allow for the early detection of small, asymptomatic tumors that may represent cancer metastasis or recurrence. Tissue diagnosis is critical in determining the choice...

Descripción completa

Detalles Bibliográficos
Autores principales: Rinehardt, Hannah N., Longo, Sadie, Gilbert, Ryan, Shoaf, Jennifer N., Edwards, Wilson B., Kohanbash, Gary, Malek, Marcus M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104535/
https://www.ncbi.nlm.nih.gov/pubmed/35565350
http://dx.doi.org/10.3390/cancers14092221
Descripción
Sumario:SIMPLE SUMMARY: Positron emission tomography (PET)/computed tomography (CT) scans are widely used as a form of full body imaging and allow for the early detection of small, asymptomatic tumors that may represent cancer metastasis or recurrence. Tissue diagnosis is critical in determining the choice of ongoing targeted therapy for pediatric patients with solid tumors. These small tumors may be difficult to localize in the operating room, especially in a re-operative or radiated area of the body. An adjunct such as a PET probe, used to guide intra-operative dissection, is the ideal tool to assist in cases where an occult tumor requires an excisional biopsy. ABSTRACT: 18F-fluorodeoxyglucose (FDG) is a glucose analog that acts as a marker for glucose uptake and metabolism. FDG PET scans are used in monitoring pediatric cancers. The handheld PET probe localization of FDG-avid lesions is an emerging modality for radio-guided surgery (RGS). We sought to assess the utility of PET probe in localizing occult FDG-avid tumors in pediatric patients. PET probe functionality was evaluated by using a PET/CT scan calibration phantom. The PET probe was able to detect FDG photon emission from simulated tumors with an expected decay of the radioisotope over time. Specificity for simulated tumor detection was lower in a model that included background FDG. In a clinical model, eight pediatric patients with FDG-avid primary, recurrent or metastatic cancer underwent a tumor excision, utilizing IV FDG and PET probe survey. Adequate tissue for diagnosis was present in 16 of 17 resected specimens, and pathology was positive for malignancy in 12 of the 17 FDG-avid lesions. PET probe gamma counts per second were higher in tumors compared with adjacent benign tissue in all operations. The median ex vivo tumor-to-background ratio (TBR) was 4.0 (range 0.9–12). The PET probe confirmed the excision of occult FDG-avid tumors in eight pediatric patients.