Cargando…

A Comparative Study of Machine Learning Methods for Predicting Live Weight of Duroc, Landrace, and Yorkshire Pigs

SIMPLE SUMMARY: Live weight is an important indicator of livestock productivity and serves as an informative measure for the health, feeding, breeding, and selection of livestock. In this paper, the live weight of pig was estimated using six morphometric measurements, breed, weight at birth, weight...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruchay, Alexey, Gritsenko, Svetlana, Ermolova, Evgenia, Bochkarev, Alexander, Ermolov, Sergey, Guo, Hao, Pezzuolo, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104573/
https://www.ncbi.nlm.nih.gov/pubmed/35565577
http://dx.doi.org/10.3390/ani12091152
Descripción
Sumario:SIMPLE SUMMARY: Live weight is an important indicator of livestock productivity and serves as an informative measure for the health, feeding, breeding, and selection of livestock. In this paper, the live weight of pig was estimated using six morphometric measurements, breed, weight at birth, weight at weaning, and age at weaning. In the present paper, we propose a comparative analysis of various machine learning methods using outlier detection, normalisation, hyperparameter optimisation, and stack generalisation to increase the accuracy of the predictions of the live weight of pigs. The StackingRegressor algorithm yielded a prediction quality of the live weight of Duroc, Landrace, and Yorkshire pigs that was higher than that of the state-of-the art algorithms. ABSTRACT: Live weight is an important indicator of livestock productivity and serves as an informative measure for the health, feeding, breeding, and selection of livestock. In this paper, the live weight of pig was estimated using six morphometric measurements, weight at birth, weight at weaning, and age at weaning. This study utilised a dataset including 340 pigs of the Duroc, Landrace, and Yorkshire breeds. In the present paper, we propose a comparative analysis of various machine learning methods using outlier detection, normalisation, hyperparameter optimisation, and stack generalisation to increase the accuracy of the predictions of the live weight of pigs. The performance of live weight prediction was assessed based on the evaluation criteria: the coefficient of determination, the root-mean-squared error, the mean absolute error, and the mean absolute percentage error. The performance measures in our experiments were also validated through 10-fold cross-validation to provide a robust model for predicting the pig live weight. The StackingRegressor model was found to provide the best results with an MAE of 4.331 and a MAPE of 4.296 on the test dataset.