Cargando…
Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea
The death of hair cells and damage of natural tip links is one of the main causes of hearing-loss disability, and the development of an advanced artificial hearing aid holds the key to assisting those suffering from hearing loss. This study demonstrates the potential of using electrospun polyvinylid...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104576/ https://www.ncbi.nlm.nih.gov/pubmed/35564175 http://dx.doi.org/10.3390/nano12091466 |
_version_ | 1784707827744374784 |
---|---|
author | Sabouni Tabari, Rana Chen, Yu Thummavichai, Kunyapat Zhang, Yan Saadi, Zakaria Neves, Ana I. S. Xia, Yongde Zhu, Yanqiu |
author_facet | Sabouni Tabari, Rana Chen, Yu Thummavichai, Kunyapat Zhang, Yan Saadi, Zakaria Neves, Ana I. S. Xia, Yongde Zhu, Yanqiu |
author_sort | Sabouni Tabari, Rana |
collection | PubMed |
description | The death of hair cells and damage of natural tip links is one of the main causes of hearing-loss disability, and the development of an advanced artificial hearing aid holds the key to assisting those suffering from hearing loss. This study demonstrates the potential of using electrospun polyvinylidene fluoride (PVDF) fibers to serve as the artificial tip links, for long-term hearing-aid-device development based on their piezoelectric properties. We have shown that the electrospun PVDF-fiber web, consisting of fibers ranging from 30–220 nm in diameter with high β-phase content, possesses the high piezoresponse of 170 mV. Analyses based on combined characterization methods including SEM, TEM, XRD, FTIR, Raman, DSC, XPS, PFM and piezoelectricity have confirmed that an optimized value of 15 wt.% PVDF could act as an effective candidate for a tip-link connector in a vibration-frequency prototype. Based on this easily reproducible electrospinning technique and the multifunctionalities of the resulting PVDF fibers, this fundamental study may shed light on the bio-inspired design of artificial, self-powered, high performance, hair-cell-like sensors in cochlea to tackle the hearing loss issue. |
format | Online Article Text |
id | pubmed-9104576 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91045762022-05-14 Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea Sabouni Tabari, Rana Chen, Yu Thummavichai, Kunyapat Zhang, Yan Saadi, Zakaria Neves, Ana I. S. Xia, Yongde Zhu, Yanqiu Nanomaterials (Basel) Article The death of hair cells and damage of natural tip links is one of the main causes of hearing-loss disability, and the development of an advanced artificial hearing aid holds the key to assisting those suffering from hearing loss. This study demonstrates the potential of using electrospun polyvinylidene fluoride (PVDF) fibers to serve as the artificial tip links, for long-term hearing-aid-device development based on their piezoelectric properties. We have shown that the electrospun PVDF-fiber web, consisting of fibers ranging from 30–220 nm in diameter with high β-phase content, possesses the high piezoresponse of 170 mV. Analyses based on combined characterization methods including SEM, TEM, XRD, FTIR, Raman, DSC, XPS, PFM and piezoelectricity have confirmed that an optimized value of 15 wt.% PVDF could act as an effective candidate for a tip-link connector in a vibration-frequency prototype. Based on this easily reproducible electrospinning technique and the multifunctionalities of the resulting PVDF fibers, this fundamental study may shed light on the bio-inspired design of artificial, self-powered, high performance, hair-cell-like sensors in cochlea to tackle the hearing loss issue. MDPI 2022-04-26 /pmc/articles/PMC9104576/ /pubmed/35564175 http://dx.doi.org/10.3390/nano12091466 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sabouni Tabari, Rana Chen, Yu Thummavichai, Kunyapat Zhang, Yan Saadi, Zakaria Neves, Ana I. S. Xia, Yongde Zhu, Yanqiu Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea |
title | Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea |
title_full | Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea |
title_fullStr | Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea |
title_full_unstemmed | Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea |
title_short | Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea |
title_sort | piezoelectric property of electrospun pvdf nanofibers as linking tips of artificial-hair-cell structures in cochlea |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104576/ https://www.ncbi.nlm.nih.gov/pubmed/35564175 http://dx.doi.org/10.3390/nano12091466 |
work_keys_str_mv | AT sabounitabarirana piezoelectricpropertyofelectrospunpvdfnanofibersaslinkingtipsofartificialhaircellstructuresincochlea AT chenyu piezoelectricpropertyofelectrospunpvdfnanofibersaslinkingtipsofartificialhaircellstructuresincochlea AT thummavichaikunyapat piezoelectricpropertyofelectrospunpvdfnanofibersaslinkingtipsofartificialhaircellstructuresincochlea AT zhangyan piezoelectricpropertyofelectrospunpvdfnanofibersaslinkingtipsofartificialhaircellstructuresincochlea AT saadizakaria piezoelectricpropertyofelectrospunpvdfnanofibersaslinkingtipsofartificialhaircellstructuresincochlea AT nevesanais piezoelectricpropertyofelectrospunpvdfnanofibersaslinkingtipsofartificialhaircellstructuresincochlea AT xiayongde piezoelectricpropertyofelectrospunpvdfnanofibersaslinkingtipsofartificialhaircellstructuresincochlea AT zhuyanqiu piezoelectricpropertyofelectrospunpvdfnanofibersaslinkingtipsofartificialhaircellstructuresincochlea |