Cargando…
Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia
The application of layered zeolites of MWW topology in environmental catalysis has attracted growing attention in recent years; however, only a few studies have explored their performance in selective catalytic reduction with ammonia (NH(3)-SCR). Thus, our work describes, for the first time, the one...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104601/ https://www.ncbi.nlm.nih.gov/pubmed/35566333 http://dx.doi.org/10.3390/molecules27092983 |
_version_ | 1784707834069385216 |
---|---|
author | Szymaszek-Wawryca, Agnieszka Díaz, Urbano Samojeden, Bogdan Motak, Monika |
author_facet | Szymaszek-Wawryca, Agnieszka Díaz, Urbano Samojeden, Bogdan Motak, Monika |
author_sort | Szymaszek-Wawryca, Agnieszka |
collection | PubMed |
description | The application of layered zeolites of MWW topology in environmental catalysis has attracted growing attention in recent years; however, only a few studies have explored their performance in selective catalytic reduction with ammonia (NH(3)-SCR). Thus, our work describes, for the first time, the one-pot synthesis of Fe-modified NH(3)-SCR catalysts supported on MCM-22, MCM-36, and ITQ-2. The calculated chemical composition of the materials was Si/Al of 30 and 5 wt.% of Fe. The reported results indicated a correlation between the arrangement of MWW layers and the form of iron in the zeolitic structure. We have observed that one-pot synthesis resulted in high dispersion of Fe(3+) sites, which significantly enhanced low-temperature activity and prevented N(2)O generation during the reaction. All of the investigated samples exhibited almost 100% NO conversion at 250 °C. The most satisfactory activity was exhibited by Fe-modified MCM-36, since 50% of NO reduction was obtained at 150 °C for this catalyst. This effect can be explained by the abundance of isolated Fe(3+) species, which are active in low-temperature NH(3)-SCR. Additionally, SiO(2) pillars present in MCM-36 provided an additional surface for the deposition of the active phase. |
format | Online Article Text |
id | pubmed-9104601 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91046012022-05-14 Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia Szymaszek-Wawryca, Agnieszka Díaz, Urbano Samojeden, Bogdan Motak, Monika Molecules Article The application of layered zeolites of MWW topology in environmental catalysis has attracted growing attention in recent years; however, only a few studies have explored their performance in selective catalytic reduction with ammonia (NH(3)-SCR). Thus, our work describes, for the first time, the one-pot synthesis of Fe-modified NH(3)-SCR catalysts supported on MCM-22, MCM-36, and ITQ-2. The calculated chemical composition of the materials was Si/Al of 30 and 5 wt.% of Fe. The reported results indicated a correlation between the arrangement of MWW layers and the form of iron in the zeolitic structure. We have observed that one-pot synthesis resulted in high dispersion of Fe(3+) sites, which significantly enhanced low-temperature activity and prevented N(2)O generation during the reaction. All of the investigated samples exhibited almost 100% NO conversion at 250 °C. The most satisfactory activity was exhibited by Fe-modified MCM-36, since 50% of NO reduction was obtained at 150 °C for this catalyst. This effect can be explained by the abundance of isolated Fe(3+) species, which are active in low-temperature NH(3)-SCR. Additionally, SiO(2) pillars present in MCM-36 provided an additional surface for the deposition of the active phase. MDPI 2022-05-06 /pmc/articles/PMC9104601/ /pubmed/35566333 http://dx.doi.org/10.3390/molecules27092983 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Szymaszek-Wawryca, Agnieszka Díaz, Urbano Samojeden, Bogdan Motak, Monika Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia |
title | Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia |
title_full | Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia |
title_fullStr | Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia |
title_full_unstemmed | Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia |
title_short | Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia |
title_sort | catalytic performance of one-pot synthesized fe-mww layered zeolites (mcm-22, mcm-36, and itq-2) in selective catalytic reduction of nitrogen oxides with ammonia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104601/ https://www.ncbi.nlm.nih.gov/pubmed/35566333 http://dx.doi.org/10.3390/molecules27092983 |
work_keys_str_mv | AT szymaszekwawrycaagnieszka catalyticperformanceofonepotsynthesizedfemwwlayeredzeolitesmcm22mcm36anditq2inselectivecatalyticreductionofnitrogenoxideswithammonia AT diazurbano catalyticperformanceofonepotsynthesizedfemwwlayeredzeolitesmcm22mcm36anditq2inselectivecatalyticreductionofnitrogenoxideswithammonia AT samojedenbogdan catalyticperformanceofonepotsynthesizedfemwwlayeredzeolitesmcm22mcm36anditq2inselectivecatalyticreductionofnitrogenoxideswithammonia AT motakmonika catalyticperformanceofonepotsynthesizedfemwwlayeredzeolitesmcm22mcm36anditq2inselectivecatalyticreductionofnitrogenoxideswithammonia |