Cargando…
The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos
Osteoporosis is characterized by reduction in bone mass and microarchitectural deterioration of the bone, which causes bone fragility and fracture susceptibility. Ishige sinicola, a brown alga, reportedly affects osteoblast differentiation. However, its protective effect on estrogen deficiency-induc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104637/ https://www.ncbi.nlm.nih.gov/pubmed/35565651 http://dx.doi.org/10.3390/nu14091683 |
_version_ | 1784707842891055104 |
---|---|
author | Kim, Mihyang Park, Mihwa |
author_facet | Kim, Mihyang Park, Mihwa |
author_sort | Kim, Mihyang |
collection | PubMed |
description | Osteoporosis is characterized by reduction in bone mass and microarchitectural deterioration of the bone, which causes bone fragility and fracture susceptibility. Ishige sinicola, a brown alga, reportedly affects osteoblast differentiation. However, its protective effect on estrogen deficiency-induced bone loss has not been elucidated. This study aimed to investigate the effect of I. sinicola extract (ISE) on ovariectomy (OVX)-induced bone loss in vivo and osteoclastogenesis in vitro. Female Sprague-Dawley rats were randomly assigned to the sham-operated (SHAM) group and four OVX subgroups: SHAM, OVX, ISE20 (20 mg/kg), ISE200 (200 mg/kg), and estradiol (10 μg/kg). After 6 weeks of treatment, the bone mineral density (BMD), femur indices, and serum biomarker levels were measured. Furthermore, the effects of ISE on osteoclastogenesis and the expression of osteoclast-specific markers were measured. ISE administration improved the trabecular bone structure, bone biomechanical properties, BMD, and bone mineralization degree. In addition, the levels of serum bone turnover markers were decreased in the ISE group compared with those in the OVX group. Moreover, ISE inhibited osteoclast formation by downregulating NFATc1, TRAP, c-Src, c-Fos, and cathepsin K without any cytotoxic effects on RANKL-induced osteoclast formation. Therefore, we suggest that ISE has therapeutic potential in postmenopausal osteoporosis. |
format | Online Article Text |
id | pubmed-9104637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91046372022-05-14 The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos Kim, Mihyang Park, Mihwa Nutrients Article Osteoporosis is characterized by reduction in bone mass and microarchitectural deterioration of the bone, which causes bone fragility and fracture susceptibility. Ishige sinicola, a brown alga, reportedly affects osteoblast differentiation. However, its protective effect on estrogen deficiency-induced bone loss has not been elucidated. This study aimed to investigate the effect of I. sinicola extract (ISE) on ovariectomy (OVX)-induced bone loss in vivo and osteoclastogenesis in vitro. Female Sprague-Dawley rats were randomly assigned to the sham-operated (SHAM) group and four OVX subgroups: SHAM, OVX, ISE20 (20 mg/kg), ISE200 (200 mg/kg), and estradiol (10 μg/kg). After 6 weeks of treatment, the bone mineral density (BMD), femur indices, and serum biomarker levels were measured. Furthermore, the effects of ISE on osteoclastogenesis and the expression of osteoclast-specific markers were measured. ISE administration improved the trabecular bone structure, bone biomechanical properties, BMD, and bone mineralization degree. In addition, the levels of serum bone turnover markers were decreased in the ISE group compared with those in the OVX group. Moreover, ISE inhibited osteoclast formation by downregulating NFATc1, TRAP, c-Src, c-Fos, and cathepsin K without any cytotoxic effects on RANKL-induced osteoclast formation. Therefore, we suggest that ISE has therapeutic potential in postmenopausal osteoporosis. MDPI 2022-04-19 /pmc/articles/PMC9104637/ /pubmed/35565651 http://dx.doi.org/10.3390/nu14091683 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Mihyang Park, Mihwa The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos |
title | The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos |
title_full | The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos |
title_fullStr | The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos |
title_full_unstemmed | The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos |
title_short | The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos |
title_sort | brown algae ishige sinicola extract ameliorates ovariectomy-induced bone loss in rats and suppresses osteoclastogenesis through downregulation of nfatc1/c-fos |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104637/ https://www.ncbi.nlm.nih.gov/pubmed/35565651 http://dx.doi.org/10.3390/nu14091683 |
work_keys_str_mv | AT kimmihyang thebrownalgaeishigesinicolaextractamelioratesovariectomyinducedbonelossinratsandsuppressesosteoclastogenesisthroughdownregulationofnfatc1cfos AT parkmihwa thebrownalgaeishigesinicolaextractamelioratesovariectomyinducedbonelossinratsandsuppressesosteoclastogenesisthroughdownregulationofnfatc1cfos AT kimmihyang brownalgaeishigesinicolaextractamelioratesovariectomyinducedbonelossinratsandsuppressesosteoclastogenesisthroughdownregulationofnfatc1cfos AT parkmihwa brownalgaeishigesinicolaextractamelioratesovariectomyinducedbonelossinratsandsuppressesosteoclastogenesisthroughdownregulationofnfatc1cfos |