Cargando…
Deep Federated Adaptation: An Adaptative Residential Load Forecasting Approach with Federated Learning
Residential-level short-term load forecasting (STLF) is significant for power system operation. Data-driven forecasting models, especially machine-learning-based models, are sensitive to the amount of data. However, privacy and security concerns raised by supervision departments and users limit the...
Autores principales: | Shi, Yuan, Xu, Xianze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104819/ https://www.ncbi.nlm.nih.gov/pubmed/35590953 http://dx.doi.org/10.3390/s22093264 |
Ejemplares similares
-
Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach
por: Zhou, Xinxin, et al.
Publicado: (2022) -
A Cluster-Driven Adaptive Training Approach for Federated Learning
por: Jeong, Younghwan, et al.
Publicado: (2022) -
FedBranched: Leveraging Federated Learning for Anomaly-Aware Load Forecasting in Energy Networks
por: Manzoor, Habib Ullah, et al.
Publicado: (2023) -
FedMSA: A Model Selection and Adaptation System for Federated Learning
por: Sun, Rui, et al.
Publicado: (2022) -
An Adaptive Model Filtering Algorithm Based on Grubbs Test in Federated Learning
por: Yao, Wenbin, et al.
Publicado: (2023)