Cargando…
Optimization of Sensory Properties of Cold Brew Coffee Produced by Reduced Pressure Cycles and Its Physicochemical Characteristics
The use of vacuum cycles for the cold extraction of coffee is a new process that leads to a significant reduction in process time of Cold Brew compared to conventional methods. This research aimed at specifying the necessary parameters for producing a consumer-accepted cold brew coffee by applying v...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104833/ https://www.ncbi.nlm.nih.gov/pubmed/35566326 http://dx.doi.org/10.3390/molecules27092971 |
Sumario: | The use of vacuum cycles for the cold extraction of coffee is a new process that leads to a significant reduction in process time of Cold Brew compared to conventional methods. This research aimed at specifying the necessary parameters for producing a consumer-accepted cold brew coffee by applying vacuum cycles. This was achieved by investigating the effect of the number of cycles and of the applied pressure (vacuum) on the physicochemical characteristics of the cold brew coffee, i.e., total dissolved solids (TDS%), pH, acidity, phenol and caffeine content and color. Furthermore, sensory evaluation took place by members of the Specialty Coffee Association of America (SCAA) to specify parameters such as coffee blend, coffee/water ratio, total water hardness and grind size and secondly to determine the optimal pressure and number of cycles for a tasty final beverage. The sensory and physiochemical characteristics of cold extraction coffee were investigated by Principal Component Analysis (PCA). It became evident that coffee extraction by applying two vacuum cycles at 205 mbar pressure produced the lowest intensity of physiochemical properties (caffeine, phenols, acidity, TDS% and pH), and the highest score of sensory characteristics (fragrance, body, acidity, flavor, balance, and aftertaste). Caffeine and phenol concentration of the optimal beverage were 26.66 ± 1.56 mg/g coffee and 23.36 ± 0.79 mg gallic acid/g coffee respectively. The physiochemical characteristics were also compared to a beverage of hot extraction of the same blend and ratio of coffee to water. |
---|