Cargando…

Advances in Titanium/Polymer Hybrid Joints by Carbon Fiber Plug Insert: Current Status and Review

A literature review of up-to-date methods to strengthen Ti/carbon-fiber-reinforced polymer (CFRP) hybrid joints is given. However, there are little or no studies on Ti/CFRP joints by carbon fiber plug insert, which takes advantage of the extremely high surface adhesion area of ~6 μm CFs. Therefore,...

Descripción completa

Detalles Bibliográficos
Autores principales: Faudree, Michael C., Uchida, Helmut Takahiro, Kimura, Hideki, Kaneko, Satoru, Salvia, Michelle, Nishi, Yoshitake
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104837/
https://www.ncbi.nlm.nih.gov/pubmed/35591553
http://dx.doi.org/10.3390/ma15093220
Descripción
Sumario:A literature review of up-to-date methods to strengthen Ti/carbon-fiber-reinforced polymer (CFRP) hybrid joints is given. However, there are little or no studies on Ti/CFRP joints by carbon fiber plug insert, which takes advantage of the extremely high surface adhesion area of ~6 μm CFs. Therefore, we cover the current status and review our previously published results developing hybrid joints by a CF plug insert with spot-welded Ti half-lengths to enhance the safety levels of aircraft fan blades. A thermoset Ti/CF/epoxy joint exhibited an ultimate tensile strength (UTS) of 283 MPa when calculated according to the rule of mixtures (RM) for the CF cross-section portion. With concern for the environment, thermoplastic polymers (TPs) allowed recyclability. However, a drawback is easy CF pull-out from difficult-to-adhere TPs due to insufficient contact sites. Therefore, research on a novel method of homogeneous low voltage electron beam irradiation (HLEBI) to activate a bare CF half-length prior to dipping in a TP resin was reviewed and showed that the UTS by the RM of Ti/EBCF/acrylonitrile butadiene styrene (ABS) and Ti/EBCF/polycarbonate (PC) joints increased 154% (from 55 to 140 MPa) and 829% (from 30 to 195 MPa), respectively, over the untreated sample. The optimum 0.30 MGy HLEBI prevented CF pull-out by apparently growing crystallites into the TP around the CF circumference, raising the UTS amount closer to that of epoxy.