Cargando…
Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition
Electron beam directed energy deposition (EB-DED) is a promising manufacturing process for the fabrication of large-scale, fully dense and near net shape metallic components. However, limited knowledge is available on the EB-DED process of titanium alloys. In this study, a near-α high-temperature ti...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104961/ https://www.ncbi.nlm.nih.gov/pubmed/35591444 http://dx.doi.org/10.3390/ma15093109 |
_version_ | 1784707922871189504 |
---|---|
author | Zhang, Guodong Liu, Wei Zhang, Peng Xiong, Huaping Gao, Jianshi Yu, Huai Yuan, Hong |
author_facet | Zhang, Guodong Liu, Wei Zhang, Peng Xiong, Huaping Gao, Jianshi Yu, Huai Yuan, Hong |
author_sort | Zhang, Guodong |
collection | PubMed |
description | Electron beam directed energy deposition (EB-DED) is a promising manufacturing process for the fabrication of large-scale, fully dense and near net shape metallic components. However, limited knowledge is available on the EB-DED process of titanium alloys. In this study, a near-α high-temperature titanium alloy Ti60 (Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si) was fabricated via EB-DED. The chemical composition, microstructure, tensile property (at room temperature and 600 °C), and creep behavior of the fabricated alloy were investigated and compared with those of the conventional wrought lamellar and bimodal counterparts. Results indicated that the average evaporation loss of Al and Sn was 10.28% and 5.01%, respectively. The microstructure of the as-built alloy was characterized by coarse columnar grains, lamellar α, and the precipitated elliptical silicides at the α/β interfaces. In terms of tensile properties, the vertical specimens exhibited lower strength but higher ductility than the horizontal specimens at both room temperature and 600 °C. Furthermore, the tensile creep strain of the EB-DED Ti60 alloy measured at 600 °C and 150 MPa for 100 h under as-built and post-deposition STA conditions was less than 0.15%, which meets the standard requirements for the wrought Ti60 alloy. The creep resistance of the EB-DED Ti60 alloy was superior to that of its wrought bimodal counterpart. |
format | Online Article Text |
id | pubmed-9104961 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91049612022-05-14 Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition Zhang, Guodong Liu, Wei Zhang, Peng Xiong, Huaping Gao, Jianshi Yu, Huai Yuan, Hong Materials (Basel) Article Electron beam directed energy deposition (EB-DED) is a promising manufacturing process for the fabrication of large-scale, fully dense and near net shape metallic components. However, limited knowledge is available on the EB-DED process of titanium alloys. In this study, a near-α high-temperature titanium alloy Ti60 (Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si) was fabricated via EB-DED. The chemical composition, microstructure, tensile property (at room temperature and 600 °C), and creep behavior of the fabricated alloy were investigated and compared with those of the conventional wrought lamellar and bimodal counterparts. Results indicated that the average evaporation loss of Al and Sn was 10.28% and 5.01%, respectively. The microstructure of the as-built alloy was characterized by coarse columnar grains, lamellar α, and the precipitated elliptical silicides at the α/β interfaces. In terms of tensile properties, the vertical specimens exhibited lower strength but higher ductility than the horizontal specimens at both room temperature and 600 °C. Furthermore, the tensile creep strain of the EB-DED Ti60 alloy measured at 600 °C and 150 MPa for 100 h under as-built and post-deposition STA conditions was less than 0.15%, which meets the standard requirements for the wrought Ti60 alloy. The creep resistance of the EB-DED Ti60 alloy was superior to that of its wrought bimodal counterpart. MDPI 2022-04-25 /pmc/articles/PMC9104961/ /pubmed/35591444 http://dx.doi.org/10.3390/ma15093109 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Guodong Liu, Wei Zhang, Peng Xiong, Huaping Gao, Jianshi Yu, Huai Yuan, Hong Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition |
title | Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition |
title_full | Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition |
title_fullStr | Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition |
title_full_unstemmed | Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition |
title_short | Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition |
title_sort | chemical composition, microstructure, tensile and creep behavior of ti60 alloy fabricated via electron beam directed energy deposition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104961/ https://www.ncbi.nlm.nih.gov/pubmed/35591444 http://dx.doi.org/10.3390/ma15093109 |
work_keys_str_mv | AT zhangguodong chemicalcompositionmicrostructuretensileandcreepbehaviorofti60alloyfabricatedviaelectronbeamdirectedenergydeposition AT liuwei chemicalcompositionmicrostructuretensileandcreepbehaviorofti60alloyfabricatedviaelectronbeamdirectedenergydeposition AT zhangpeng chemicalcompositionmicrostructuretensileandcreepbehaviorofti60alloyfabricatedviaelectronbeamdirectedenergydeposition AT xionghuaping chemicalcompositionmicrostructuretensileandcreepbehaviorofti60alloyfabricatedviaelectronbeamdirectedenergydeposition AT gaojianshi chemicalcompositionmicrostructuretensileandcreepbehaviorofti60alloyfabricatedviaelectronbeamdirectedenergydeposition AT yuhuai chemicalcompositionmicrostructuretensileandcreepbehaviorofti60alloyfabricatedviaelectronbeamdirectedenergydeposition AT yuanhong chemicalcompositionmicrostructuretensileandcreepbehaviorofti60alloyfabricatedviaelectronbeamdirectedenergydeposition |