Cargando…
Accelerated Discovery of the Polymer Blends for Cartilage Repair through Data-Mining Tools and Machine-Learning Algorithm
In designing successful cartilage substitutes, the selection of scaffold materials plays a central role, among several other important factors. In an empirical approach, the selection of the most appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally...
Autores principales: | Mairpady, Anusha, Mourad, Abdel-Hamid I., Mozumder, Mohammad Sayem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104973/ https://www.ncbi.nlm.nih.gov/pubmed/35566970 http://dx.doi.org/10.3390/polym14091802 |
Ejemplares similares
-
Statistical and Machine Learning-Driven Optimization of Mechanical Properties in Designing Durable HDPE Nanobiocomposites
por: Mairpady, Anusha, et al.
Publicado: (2021) -
On the Injection Molding Processing Parameters of HDPE-TiO(2) Nanocomposites
por: Mourad, Abdel-Hamid I., et al.
Publicado: (2017) -
Optimization of Injection Molding Parameters for HDPE/TiO(2) Nanocomposites Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis
por: Pervez, Hifsa, et al.
Publicado: (2016) -
Scaffolds for Cartilage Tissue Engineering from a Blend of Polyethersulfone and Polyurethane Polymers
por: Wasyłeczko, Monika, et al.
Publicado: (2023) -
Data mining and knowledge discovery with evolutionary algorithms
por: Freitas, Alex A
Publicado: (2002)