Cargando…
Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity
Identification of ionic liquids with low toxicity is paramount for applications in various domains. Traditional approaches used for determining the toxicity of ionic liquids are often expensive, and can be labor intensive and time consuming. In order to mitigate these limitations, researchers have r...
Autores principales: | Chipofya, Mapopa, Tayara, Hilal, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104997/ https://www.ncbi.nlm.nih.gov/pubmed/35563648 http://dx.doi.org/10.3390/ijms23095258 |
Ejemplares similares
-
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
por: Chipofya, Mapopa, et al.
Publicado: (2021) -
An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors
por: Jaganathan, Keerthana, et al.
Publicado: (2022) -
XML-CIMT: Explainable Machine Learning (XML) Model for Predicting Chemical-Induced Mitochondrial Toxicity
por: Jaganathan, Keerthana, et al.
Publicado: (2022) -
Improving the Quantification of DNA Sequences Using Evolutionary Information Based on Deep Learning
por: Tayara, Hilal, et al.
Publicado: (2019) -
UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites
por: Siraj, Arslan, et al.
Publicado: (2021)