Cargando…
Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network
PURPOSE: Developing deep learning algorithms for breast cancer screening is limited due to the lack of labeled full-field digital mammograms (FFDMs). Since FFDM is a new technique that rose in recent decades and replaced digitized screen-film mammograms (DFM) as the main technique for breast cancer...
Autores principales: | Zhou, Yuanpin, Wei, Jun, Wu, Dongmei, Zhang, Yaqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105019/ https://www.ncbi.nlm.nih.gov/pubmed/35574397 http://dx.doi.org/10.3389/fonc.2022.868257 |
Ejemplares similares
-
A generative adversarial network for synthetization of regions of interest based on digital mammograms
por: Oyelade, Olaide N., et al.
Publicado: (2022) -
Perceived Sufficiency of Full-Field Digital Mammograms With and Without Irreversible Image Data Compression for Comparison with Next-Year Mammograms
por: Destounis, Stamatia, et al.
Publicado: (2010) -
Performance in digital mammography with and without film prior mammograms
por: Taylor-Phillips, S, et al.
Publicado: (2009) -
Digital zoom of the full-field digital mammogram versus magnification mammography: a systematic review
por: Øynes, Mona, et al.
Publicado: (2020) -
Volumetric Breast Density Estimation from Full-Field Digital Mammograms: A Validation Study
por: Gubern-Mérida, Albert, et al.
Publicado: (2014)