Cargando…
Effects of Input Parameter Range on the Accuracy of Artificial Neural Network Prediction for the Injection Molding Process
Artificial neural network (ANN) is a representative technique for identifying relationships that contain complex nonlinearities. However, few studies have analyzed the ANN’s ability to represent nonlinear or linear relationships between input and output parameters in injection molding. The melt temp...
Autores principales: | Lee, Junhan, Yang, Dongcheol, Yoon, Kyunghwan, Kim, Jongsun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105118/ https://www.ncbi.nlm.nih.gov/pubmed/35566893 http://dx.doi.org/10.3390/polym14091724 |
Ejemplares similares
-
An Experimental Study on Color Shift of Injection-Molded Mobile LGP Depending on Surface Micropattern
por: Kim, Mooyeon, et al.
Publicado: (2020) -
Innovative Injection Molding Process for the Fabrication of Woven Fabric Reinforced Thermoplastic Composites
por: Jeong, Euichul, et al.
Publicado: (2022) -
Optimization of Injection-Molding Process for Thin-Walled Polypropylene Part Using Artificial Neural Network and Taguchi Techniques
por: Moayyedian, Mehdi, et al.
Publicado: (2021) -
Pressure Analysis of Dynamic Injection Molding and Process Parameter Optimization for Reducing Warpage of Injection Molded Products
por: Wang, Xinyu, et al.
Publicado: (2017) -
On the Injection Molding Processing Parameters of HDPE-TiO(2) Nanocomposites
por: Mourad, Abdel-Hamid I., et al.
Publicado: (2017)