Cargando…

Urban Air Pollution and Emergency Department Visits for Neoplasms and Outcomes of Blood Forming and Metabolic Systems

This study focused on investigating possible associations between exposure to urban air pollution and the number of emergency department (ED) visits for various health outcomes. The outcomes were grouped into four chapters of the International Classification of Diseases Tenth Revision (ICD-10) syste...

Descripción completa

Detalles Bibliográficos
Autores principales: Szyszkowicz, Mieczysław, Lukina, Anna, Dinu, Tatiana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105125/
https://www.ncbi.nlm.nih.gov/pubmed/35564996
http://dx.doi.org/10.3390/ijerph19095603
Descripción
Sumario:This study focused on investigating possible associations between exposure to urban air pollution and the number of emergency department (ED) visits for various health outcomes. The outcomes were grouped into four chapters of the International Classification of Diseases Tenth Revision (ICD-10) system (i.e., Chapter II-IV: “Neoplasms”, “Diseases of the blood”, “Endocrine, nutritional and metabolic diseases”, and XVIII: “Symptoms, signs and abnormal clinical and laboratory findings“). The data were collected for the city of Toronto, Canada, (2004–2015, 4292 days). Four gaseous air pollutants (carbon monoxide (CO), nitrogen dioxide (NO(2)), ground level ozone (O(3)), and sulfur dioxide (SO(2))) and fine particulate matter (PM(2.5)), and two calculated air quality health indexes (AQHI) based on Toronto were used. The statistical models were constructed by applying the conditional Poisson regression. The exposure was assessed over a maximum of 15 days (time lags 0–14 days). An analysis was performed with the following strata: sex, age, and seasons. Relative risks (RR) and their 95% confidence intervals (95%CI) were estimated for an increase in concentration by a one interquartile range (IQR). For the AQHI (composed of NO(2), O(3), and PM(2.5)), IQR = 1, the estimations for lag 1 and all patients, are RR = 1.023 (95%CI: 1.008, 1.038), 1.026 (1.012, 1.040), 1.013 (1.003, 1.024), and 1.007 (1.003, 1.010) for Chapters II–IV and XVIII, respectively. The results show that in the four large, analyzed health groups, the impact of air quality mainly occurs over a short period (from current day to a maximum of 3 days after exposure).