Cargando…
Behavioral Change Prediction from Physiological Signals Using Deep Learned Features
Predicting change from multivariate time series has relevant applications ranging from the medical to engineering fields. Multisensory stimulation therapy in patients with dementia aims to change the patient’s behavioral state. For example, patients who exhibit a baseline of agitation may be paced t...
Autores principales: | Diraco, Giovanni, Siciliano, Pietro, Leone, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105250/ https://www.ncbi.nlm.nih.gov/pubmed/35591158 http://dx.doi.org/10.3390/s22093468 |
Ejemplares similares
-
Remaining Useful Life Prediction from 3D Scan Data with Genetically Optimized Convolutional Neural Networks
por: Diraco, Giovanni, et al.
Publicado: (2021) -
AI-Based Early Change Detection in Smart Living Environments
por: Diraco, Giovanni, et al.
Publicado: (2019) -
A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications
por: Diraco, Giovanni, et al.
Publicado: (2017) -
Review on Human Action Recognition in Smart Living: Sensing Technology, Multimodality, Real-Time Processing, Interoperability, and Resource-Constrained Processing
por: Diraco, Giovanni, et al.
Publicado: (2023) -
Ambient and Wearable Sensor Technologies for Energy Expenditure Quantification of Ageing Adults
por: Leone, Alessandro, et al.
Publicado: (2022)