Cargando…
Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning
Proposal techniques that reduce financial costs in the diagnosis and treatment of animal diseases are welcome. This work uses some machine learning techniques to classify whether or not cases of canine visceral leishmaniasis are present by physical examinations. For validation of the method, four ma...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105265/ https://www.ncbi.nlm.nih.gov/pubmed/35590819 http://dx.doi.org/10.3390/s22093128 |
_version_ | 1784707998259609600 |
---|---|
author | Ferreira, Tiago S. Santana, Ewaldo E. C. Jacob Junior, Antônio F. L. Silva Junior, Paulo F. Bastos, Luciana S. Silva, Ana L. A. Melo, Solange A. Cruz, Carlos A. M. Aquino, Vivianne S. Castro, Luís S. O. Lima, Guilherme O. Freire, Raimundo C. S. |
author_facet | Ferreira, Tiago S. Santana, Ewaldo E. C. Jacob Junior, Antônio F. L. Silva Junior, Paulo F. Bastos, Luciana S. Silva, Ana L. A. Melo, Solange A. Cruz, Carlos A. M. Aquino, Vivianne S. Castro, Luís S. O. Lima, Guilherme O. Freire, Raimundo C. S. |
author_sort | Ferreira, Tiago S. |
collection | PubMed |
description | Proposal techniques that reduce financial costs in the diagnosis and treatment of animal diseases are welcome. This work uses some machine learning techniques to classify whether or not cases of canine visceral leishmaniasis are present by physical examinations. For validation of the method, four machine learning models were chosen: K-nearest neighbor, Naïve Bayes, support vector machine and logistic regression models. The tests were performed on three hundred and forty dogs, using eighteen characteristics of the animal and the ELISA (enzyme-linked immunosorbent assay) serological test as validation. Logistic regression achieved the best metrics: Accuracy of 75%, sensitivity of 84%, specificity of 67%, a positive likelihood ratio of 2.53 and a negative likelihood ratio of 0.23, showing a positive relationship in the evaluation between the true positives and rejecting the cases of false negatives. |
format | Online Article Text |
id | pubmed-9105265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91052652022-05-14 Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning Ferreira, Tiago S. Santana, Ewaldo E. C. Jacob Junior, Antônio F. L. Silva Junior, Paulo F. Bastos, Luciana S. Silva, Ana L. A. Melo, Solange A. Cruz, Carlos A. M. Aquino, Vivianne S. Castro, Luís S. O. Lima, Guilherme O. Freire, Raimundo C. S. Sensors (Basel) Communication Proposal techniques that reduce financial costs in the diagnosis and treatment of animal diseases are welcome. This work uses some machine learning techniques to classify whether or not cases of canine visceral leishmaniasis are present by physical examinations. For validation of the method, four machine learning models were chosen: K-nearest neighbor, Naïve Bayes, support vector machine and logistic regression models. The tests were performed on three hundred and forty dogs, using eighteen characteristics of the animal and the ELISA (enzyme-linked immunosorbent assay) serological test as validation. Logistic regression achieved the best metrics: Accuracy of 75%, sensitivity of 84%, specificity of 67%, a positive likelihood ratio of 2.53 and a negative likelihood ratio of 0.23, showing a positive relationship in the evaluation between the true positives and rejecting the cases of false negatives. MDPI 2022-04-20 /pmc/articles/PMC9105265/ /pubmed/35590819 http://dx.doi.org/10.3390/s22093128 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Ferreira, Tiago S. Santana, Ewaldo E. C. Jacob Junior, Antônio F. L. Silva Junior, Paulo F. Bastos, Luciana S. Silva, Ana L. A. Melo, Solange A. Cruz, Carlos A. M. Aquino, Vivianne S. Castro, Luís S. O. Lima, Guilherme O. Freire, Raimundo C. S. Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning |
title | Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning |
title_full | Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning |
title_fullStr | Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning |
title_full_unstemmed | Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning |
title_short | Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning |
title_sort | diagnostic classification of cases of canine leishmaniasis using machine learning |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105265/ https://www.ncbi.nlm.nih.gov/pubmed/35590819 http://dx.doi.org/10.3390/s22093128 |
work_keys_str_mv | AT ferreiratiagos diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT santanaewaldoec diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT jacobjuniorantoniofl diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT silvajuniorpaulof diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT bastoslucianas diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT silvaanala diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT melosolangea diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT cruzcarlosam diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT aquinoviviannes diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT castroluisso diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT limaguilhermeo diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning AT freireraimundocs diagnosticclassificationofcasesofcanineleishmaniasisusingmachinelearning |