Cargando…
Evaluation of Different Bearing Fault Classifiers in Utilizing CNN Feature Extraction Ability
In aerospace, marine, and other heavy industries, bearing fault diagnosis has been an essential part of improving machine life, reducing economic losses, and avoiding safety problems caused by machine bearing failures. Most existing bearing fault diagnosis methods face challenges in extracting the f...
Autores principales: | Xie, Wenlang, Li, Zhixiong, Xu, Yang, Gardoni, Paolo, Li, Weihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105293/ https://www.ncbi.nlm.nih.gov/pubmed/35591006 http://dx.doi.org/10.3390/s22093314 |
Ejemplares similares
-
Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
por: Zhu, Huibin, et al.
Publicado: (2021) -
CNN Hardware Accelerator for Real-Time Bearing Fault Diagnosis
por: Chung, Ching-Che, et al.
Publicado: (2023) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022) -
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
por: Liu, Chang, et al.
Publicado: (2018) -
Fault Diagnosis of Rolling Bearing Based on HPSO Algorithm Optimized CNN-LSTM Neural Network
por: Tian, He, et al.
Publicado: (2023)