Cargando…
COVID-19 Lockdown in Israel: The Environmental Effect on Ultrafine Particle Content in the Airway
Inhaled ultrafine particle (UFP) content in exhaled breath condensate (EBC) was observed as an airway inflammatory marker and an indicator of exposure to particulate matter (PM). The exceptional decline in air pollution during the COVID-19 lockdown was an opportunity to evaluate the effect of enviro...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105301/ https://www.ncbi.nlm.nih.gov/pubmed/35564902 http://dx.doi.org/10.3390/ijerph19095507 |
_version_ | 1784708006910361600 |
---|---|
author | Fireman Klein, Einat Elimeleh, Yotam Adir, Yochai Majdoub, Lana Shteinberg, Michal Kessel, Aharon |
author_facet | Fireman Klein, Einat Elimeleh, Yotam Adir, Yochai Majdoub, Lana Shteinberg, Michal Kessel, Aharon |
author_sort | Fireman Klein, Einat |
collection | PubMed |
description | Inhaled ultrafine particle (UFP) content in exhaled breath condensate (EBC) was observed as an airway inflammatory marker and an indicator of exposure to particulate matter (PM). The exceptional decline in air pollution during the COVID-19 lockdown was an opportunity to evaluate the effect of environmental changes on UFP airway content. We collected EBC samples from 30 healthy subjects during the first lockdown due to COVID-19 in Israel (March–April 2020) and compared them to EBC samples retrieved during April–June 2016 from 25 other healthy subjects (controls) living in the same northern Israeli district. All participants underwent EBC collection and blood sampling. Ambient air pollutant levels were collected from the Israeli Ministry of Environmental Protection’s online database. Data were acquired from the monitoring station closest to each subject’s home address, and means were calculated for a duration of 1 month preceding EBC collection. UFP contents were measured in the EBC and blood samples by means of the NanoSight LM20 system. There was a dramatic reduction in NO, NO(2), SO(2), and O(3) levels during lockdown compared to a similar period in 2016 (by 61%, 26%, 50%, and 45%, respectively). The specific NO(2) levels were 8.3 ppb for the lockdown group and 11.2 ppb for the controls (p = 0.01). The lockdown group had higher UFP concentrations in EBC and lower UFP concentrations in serum compared to controls (0.58 × 10(8)/mL and 4.3 × 10(8)/mL vs. 0.43 × 10(8)/mL and 6.7 × 10(8)/mL, p = 0.05 and p = 0.03, respectively). In this observational study, reduced levels of air pollution during the COVID-19 lockdown were reflected in increased levels of UFP airway contents. The suggested mechanism is that low airway inflammation levels during lockdown resulted in a decreased UFP translocation to serum. Further studies are needed to confirm this hypothesis. |
format | Online Article Text |
id | pubmed-9105301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91053012022-05-14 COVID-19 Lockdown in Israel: The Environmental Effect on Ultrafine Particle Content in the Airway Fireman Klein, Einat Elimeleh, Yotam Adir, Yochai Majdoub, Lana Shteinberg, Michal Kessel, Aharon Int J Environ Res Public Health Article Inhaled ultrafine particle (UFP) content in exhaled breath condensate (EBC) was observed as an airway inflammatory marker and an indicator of exposure to particulate matter (PM). The exceptional decline in air pollution during the COVID-19 lockdown was an opportunity to evaluate the effect of environmental changes on UFP airway content. We collected EBC samples from 30 healthy subjects during the first lockdown due to COVID-19 in Israel (March–April 2020) and compared them to EBC samples retrieved during April–June 2016 from 25 other healthy subjects (controls) living in the same northern Israeli district. All participants underwent EBC collection and blood sampling. Ambient air pollutant levels were collected from the Israeli Ministry of Environmental Protection’s online database. Data were acquired from the monitoring station closest to each subject’s home address, and means were calculated for a duration of 1 month preceding EBC collection. UFP contents were measured in the EBC and blood samples by means of the NanoSight LM20 system. There was a dramatic reduction in NO, NO(2), SO(2), and O(3) levels during lockdown compared to a similar period in 2016 (by 61%, 26%, 50%, and 45%, respectively). The specific NO(2) levels were 8.3 ppb for the lockdown group and 11.2 ppb for the controls (p = 0.01). The lockdown group had higher UFP concentrations in EBC and lower UFP concentrations in serum compared to controls (0.58 × 10(8)/mL and 4.3 × 10(8)/mL vs. 0.43 × 10(8)/mL and 6.7 × 10(8)/mL, p = 0.05 and p = 0.03, respectively). In this observational study, reduced levels of air pollution during the COVID-19 lockdown were reflected in increased levels of UFP airway contents. The suggested mechanism is that low airway inflammation levels during lockdown resulted in a decreased UFP translocation to serum. Further studies are needed to confirm this hypothesis. MDPI 2022-05-01 /pmc/articles/PMC9105301/ /pubmed/35564902 http://dx.doi.org/10.3390/ijerph19095507 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fireman Klein, Einat Elimeleh, Yotam Adir, Yochai Majdoub, Lana Shteinberg, Michal Kessel, Aharon COVID-19 Lockdown in Israel: The Environmental Effect on Ultrafine Particle Content in the Airway |
title | COVID-19 Lockdown in Israel: The Environmental Effect on Ultrafine Particle Content in the Airway |
title_full | COVID-19 Lockdown in Israel: The Environmental Effect on Ultrafine Particle Content in the Airway |
title_fullStr | COVID-19 Lockdown in Israel: The Environmental Effect on Ultrafine Particle Content in the Airway |
title_full_unstemmed | COVID-19 Lockdown in Israel: The Environmental Effect on Ultrafine Particle Content in the Airway |
title_short | COVID-19 Lockdown in Israel: The Environmental Effect on Ultrafine Particle Content in the Airway |
title_sort | covid-19 lockdown in israel: the environmental effect on ultrafine particle content in the airway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105301/ https://www.ncbi.nlm.nih.gov/pubmed/35564902 http://dx.doi.org/10.3390/ijerph19095507 |
work_keys_str_mv | AT firemankleineinat covid19lockdowninisraeltheenvironmentaleffectonultrafineparticlecontentintheairway AT elimelehyotam covid19lockdowninisraeltheenvironmentaleffectonultrafineparticlecontentintheairway AT adiryochai covid19lockdowninisraeltheenvironmentaleffectonultrafineparticlecontentintheairway AT majdoublana covid19lockdowninisraeltheenvironmentaleffectonultrafineparticlecontentintheairway AT shteinbergmichal covid19lockdowninisraeltheenvironmentaleffectonultrafineparticlecontentintheairway AT kesselaharon covid19lockdowninisraeltheenvironmentaleffectonultrafineparticlecontentintheairway |