Cargando…
Spatial Characterization of Tumor-Infiltrating Lymphocytes and Breast Cancer Progression
SIMPLE SUMMARY: The assessment of tumor-infiltrating lymphocytes (TILs) is gaining acceptance as a robust biomarker to help predict prognosis and treatment response. We evaluated TILs in whole-slide images (WSIs) of breast cancer tissue specimens stained with hematoxylin and eosin (H&E) from the...
Autores principales: | Fassler, Danielle J., Torre-Healy, Luke A., Gupta, Rajarsi, Hamilton, Alina M., Kobayashi, Soma, Van Alsten, Sarah C., Zhang, Yuwei, Kurc, Tahsin, Moffitt, Richard A., Troester, Melissa A., Hoadley, Katherine A., Saltz, Joel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105398/ https://www.ncbi.nlm.nih.gov/pubmed/35565277 http://dx.doi.org/10.3390/cancers14092148 |
Ejemplares similares
-
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
por: Abousamra, Shahira, et al.
Publicado: (2022) -
Building Efficient CNN Architectures for Histopathology Images Analysis: A Case-Study in Tumor-Infiltrating Lymphocytes Classification
por: Meirelles, André L. S., et al.
Publicado: (2022) -
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020) -
Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020) -
Publisher Correction to: Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020)