Cargando…
Forecasting Multiple Groundwater Time Series with Local and Global Deep Learning Networks
Time series data from environmental monitoring stations are often analysed with machine learning methods on an individual basis, however recent advances in the machine learning field point to the advantages of incorporating multiple related time series from the same monitoring network within a ‘glob...
Autores principales: | Clark, Stephanie R., Pagendam, Dan, Ryan, Louise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105407/ https://www.ncbi.nlm.nih.gov/pubmed/35564487 http://dx.doi.org/10.3390/ijerph19095091 |
Ejemplares similares
-
Wavelet gated multiformer for groundwater time series forecasting
por: Serravalle Reis Rodrigues, Vitor Hugo, et al.
Publicado: (2023) -
Estimation of groundwater storage loss for the Indian Ganga Basin using multiple lines of evidence
por: Janardhanan, Sreekanth, et al.
Publicado: (2023) -
Smoothing and stationarity enforcement framework for deep learning time-series forecasting
por: Livieris, Ioannis E., et al.
Publicado: (2021) -
Harnessing deep learning to forecast local microclimate using global climate data
por: Zanchi, Marco, et al.
Publicado: (2023) -
Long-term time-series pollution forecast using statistical and deep learning methods
por: Nath, Pritthijit, et al.
Publicado: (2021)