Cargando…
Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances
As the control over radioactive species becomes critical for the contemporary human life, the development of functional materials for decontamination of radioactive substances has also become important. In this work, a three-dimensional (3D) porous carbon monolith functionalized with Prussian blue p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105448/ https://www.ncbi.nlm.nih.gov/pubmed/35563507 http://dx.doi.org/10.3390/ijms23095116 |
_version_ | 1784708042862886912 |
---|---|
author | Bae, Joonwon Gu, Gyo Eun Kwon, Yeon Ju Lee, Jea Uk Hong, Jin-Yong |
author_facet | Bae, Joonwon Gu, Gyo Eun Kwon, Yeon Ju Lee, Jea Uk Hong, Jin-Yong |
author_sort | Bae, Joonwon |
collection | PubMed |
description | As the control over radioactive species becomes critical for the contemporary human life, the development of functional materials for decontamination of radioactive substances has also become important. In this work, a three-dimensional (3D) porous carbon monolith functionalized with Prussian blue particles was prepared through removal of colloidal silica particles from exfoliated graphene/silica composite precursors. The colloidal silica particles with a narrow size distribution were used to act a role of hard template and provide a sufficient surface area that could accommodate potentially hazardous radioactive substances by adsorption. The unique surface and pore structure of the functionalized porous carbon monolith was examined using electron microscopy and energy-dispersive X-ray analysis (EDS). The effective incorporation of PB nanoparticles was confirmed using diverse instrumentations such as X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS). A nitrogen adsorption/desorption study showed that surface area and pore volume increased significantly compared with the starting precursor. Adsorption tests were performed with (133)Cs ions to examine adsorption isotherms using both Langmuir and Freundlich isotherms. In addition, adsorption kinetics were also investigated and parameters were calculated. The functionalized porous carbon monolith showed a relatively higher adsorption capacity than that of pristine porous carbon monolith and the bulk PB to most radioactive ions such as (133)Cs, (85)Rb, (138)Ba, (88)Sr, (140)Ce, and (205)Tl. This material can be used for decontamination in expanded application fields. |
format | Online Article Text |
id | pubmed-9105448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91054482022-05-14 Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances Bae, Joonwon Gu, Gyo Eun Kwon, Yeon Ju Lee, Jea Uk Hong, Jin-Yong Int J Mol Sci Article As the control over radioactive species becomes critical for the contemporary human life, the development of functional materials for decontamination of radioactive substances has also become important. In this work, a three-dimensional (3D) porous carbon monolith functionalized with Prussian blue particles was prepared through removal of colloidal silica particles from exfoliated graphene/silica composite precursors. The colloidal silica particles with a narrow size distribution were used to act a role of hard template and provide a sufficient surface area that could accommodate potentially hazardous radioactive substances by adsorption. The unique surface and pore structure of the functionalized porous carbon monolith was examined using electron microscopy and energy-dispersive X-ray analysis (EDS). The effective incorporation of PB nanoparticles was confirmed using diverse instrumentations such as X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS). A nitrogen adsorption/desorption study showed that surface area and pore volume increased significantly compared with the starting precursor. Adsorption tests were performed with (133)Cs ions to examine adsorption isotherms using both Langmuir and Freundlich isotherms. In addition, adsorption kinetics were also investigated and parameters were calculated. The functionalized porous carbon monolith showed a relatively higher adsorption capacity than that of pristine porous carbon monolith and the bulk PB to most radioactive ions such as (133)Cs, (85)Rb, (138)Ba, (88)Sr, (140)Ce, and (205)Tl. This material can be used for decontamination in expanded application fields. MDPI 2022-05-04 /pmc/articles/PMC9105448/ /pubmed/35563507 http://dx.doi.org/10.3390/ijms23095116 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bae, Joonwon Gu, Gyo Eun Kwon, Yeon Ju Lee, Jea Uk Hong, Jin-Yong Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances |
title | Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances |
title_full | Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances |
title_fullStr | Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances |
title_full_unstemmed | Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances |
title_short | Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances |
title_sort | functionalization of tailored porous carbon monolith for decontamination of radioactive substances |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105448/ https://www.ncbi.nlm.nih.gov/pubmed/35563507 http://dx.doi.org/10.3390/ijms23095116 |
work_keys_str_mv | AT baejoonwon functionalizationoftailoredporouscarbonmonolithfordecontaminationofradioactivesubstances AT gugyoeun functionalizationoftailoredporouscarbonmonolithfordecontaminationofradioactivesubstances AT kwonyeonju functionalizationoftailoredporouscarbonmonolithfordecontaminationofradioactivesubstances AT leejeauk functionalizationoftailoredporouscarbonmonolithfordecontaminationofradioactivesubstances AT hongjinyong functionalizationoftailoredporouscarbonmonolithfordecontaminationofradioactivesubstances |