Cargando…
Impulse Response Functions for Nonlinear, Nonstationary, and Heterogeneous Systems, Estimated by Deconvolution and Demixing of Noisy Time Series
Impulse response functions (IRFs) are useful for characterizing systems’ dynamic behavior and gaining insight into their underlying processes, based on sensor data streams of their inputs and outputs. However, current IRF estimation methods typically require restrictive assumptions that are rarely m...
Autor principal: | Kirchner, James W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105515/ https://www.ncbi.nlm.nih.gov/pubmed/35590982 http://dx.doi.org/10.3390/s22093291 |
Ejemplares similares
-
Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates
por: Wong, Alexander, et al.
Publicado: (2015) -
Estimation of Dynamic Networks for High-Dimensional Nonstationary Time Series
por: Xu, Mengyu, et al.
Publicado: (2019) -
Bayesian Model Search for Nonstationary Periodic Time Series
por: Hadj-Amar, Beniamino, et al.
Publicado: (2019) -
Transverse Nonlinear Focusing of Nonstationary Space Charge Dominated Beams
por: Borodich, A I
Publicado: (1999) -
Broad Echo State Network with Reservoir Pruning for Nonstationary Time Series Prediction
por: Liu, Wenjie, et al.
Publicado: (2022)