Cargando…
Analysis of Proanthocyanidins in Plant Materials Using Hydrophilic Interaction HPLC-QTOF-MS
Proanthocyanidins (PACs) have been proven to possess a wide range of biological activities, but complex structures limit their study of structure–function relationships. Therefore, an efficient and general method using hydrophilic interaction high-performance liquid chromatography coupled with high-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105534/ https://www.ncbi.nlm.nih.gov/pubmed/35566031 http://dx.doi.org/10.3390/molecules27092684 |
Sumario: | Proanthocyanidins (PACs) have been proven to possess a wide range of biological activities, but complex structures limit their study of structure–function relationships. Therefore, an efficient and general method using hydrophilic interaction high-performance liquid chromatography coupled with high-resolution quadrupole time-of-flight tandem mass spectrometry (HILIC-QTOF-MS) was established to analyze PACs from different plant materials. This method was successfully applied to characterize PACs from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves (BLPs), sorghum testa (STPs) and grape seeds (GSPs). BLPs with the degree of polymerization (DP) from 1 to 8 were separated. BLPs are mainly B-type prodelphinidins and A-type BLPs were first found in this study. STPs and GSPs belonging to procyanidins showed DP from 3 to 11 and 2 to 12, respectively. A-type linkages were found for every DP of STPs and GSPs, which were first found. These results showed that HILIC-QTOF-MS can be successfully applied for analyzing PACs from different plant materials, which is necessary for the prediction of their potential health benefits. |
---|