Cargando…
Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method
The comprehensive properties of high-entropy alloys (HEAs) are highly-dependent on their phases. Although a large number of machine learning (ML) algorithms has been successfully applied to the phase prediction of HEAs, the accuracies among different ML algorithms based on the same dataset vary sign...
Autores principales: | Hou, Shuai, Li, Yujiao, Bai, Meijuan, Sun, Mengyue, Liu, Weiwei, Wang, Chao, Tetik, Halil, Lin, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105637/ https://www.ncbi.nlm.nih.gov/pubmed/35591654 http://dx.doi.org/10.3390/ma15093321 |
Ejemplares similares
-
Machine learning-based prediction of phases in high-entropy alloys: A data article
por: Machaka, Ronald, et al.
Publicado: (2021) -
Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning
por: He, Zhongping, et al.
Publicado: (2022) -
A machine learning framework for discovering high entropy alloys phase formation drivers
por: Syarif, Junaidi, et al.
Publicado: (2023) -
Retracted: Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning
por: Neuroscience, Computational Intelligence and
Publicado: (2022) -
Phase prediction and experimental realisation of a new high entropy alloy using machine learning
por: Singh, Swati, et al.
Publicado: (2023)