Cargando…
Individual Tree Species Classification Based on Convolutional Neural Networks and Multitemporal High-Resolution Remote Sensing Images
The classification of individual tree species (ITS) is beneficial to forest management and protection. Previous studies in ITS classification that are primarily based on airborne LiDAR and aerial photographs have achieved the highest classification accuracies. However, because of the complex and hig...
Autores principales: | Guo, Xianfei, Li, Hui, Jing, Linhai, Wang, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105796/ https://www.ncbi.nlm.nih.gov/pubmed/35590847 http://dx.doi.org/10.3390/s22093157 |
Ejemplares similares
-
Multitemporal remote sensing: methods and applications
por: Ban, Yifang
Publicado: (2016) -
Assessment of forest restoration with multitemporal remote sensing imagery
por: Liu, Cheng-Chien, et al.
Publicado: (2019) -
Object-based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data
por: Zhou, Weiqi, et al.
Publicado: (2008) -
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020) -
Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
por: Giannopoulos, Michalis, et al.
Publicado: (2020)