Cargando…
Image Correction Methods for Regions of Interest in Liver Cirrhosis Classification on CNNs
The average error rate in liver cirrhosis classification on B-mode ultrasound images using the traditional pattern recognition approach is still too high. In order to improve the liver cirrhosis classification performance, image correction methods and a convolution neural network (CNN) approach are...
Autores principales: | Mitani, Yoshihiro, Fisher, Robert B., Fujita, Yusuke, Hamamoto, Yoshihiko, Sakaida, Isao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105852/ https://www.ncbi.nlm.nih.gov/pubmed/35591069 http://dx.doi.org/10.3390/s22093378 |
Ejemplares similares
-
Correction: Medaka as a model for human nonalcoholic steatohepatitis
por: Matsumoto, Toshihiko, et al.
Publicado: (2023) -
Profiling of the circadian metabolome in thioacetamide‐induced liver cirrhosis in mice
por: Fujisawa, Koichi, et al.
Publicado: (2017) -
Breast cancer histopathology image classification through assembling multiple compact CNNs
por: Zhu, Chuang, et al.
Publicado: (2019) -
Efficacy of i-Scan Imaging for the Detection and Diagnosis of Early Gastric Carcinomas
por: Nishimura, Junichi, et al.
Publicado: (2014) -
Biomedical literature classification with a CNNs-based hybrid learning network
por: Yan, Yan, et al.
Publicado: (2018)